前へ | 偏微分方程式解法用のメッシュ生成トップへ | 次へ
5. 要素からの寄与の計算
三角形分割の一つの三角形について、
|
|
従って線形系(4)の両辺に対する要素と辺の寄与は次のようになる。すなわちすべてのに対して
|
|
また上の辺 に対しては
|
|
でなくてはならない。ここに
|
|
である。
が基底であることから、すべてのに対してのサポートは を頂点として持つ三角形の集合のみに帰着される。またはが三角形、または辺の頂点でない場合にはそれらの寄与はすべて0になる。
今、をが三角形の頂点となるように選ぶとき、の微分を含めた要素からの寄与を次のように厳密に算出することができる。
|
|
|
|
|
|
これは頂点が、それを頂点として含む三角形の第1ノード、第2ノード、第3ノードであり得ることによるものである(ただし)。
単にのみを含むケースについては2次元の台形公式を使って積分の計算が行える。
|
(9) |
ただしは三角形の辺の中点、すなわちであり、は三角形の面積を意味する。この積分公式は(次数が2以下の2変数多項式空間)の場合に厳密値を与える。従って
|
|
|
|
が導かれる。なお、であるならすべてのに対して
|
|
となることを利用した。
最後にに対してが上の辺の端点となると仮定すると、1次元の台形公式
|
|
が利用できて、境界上での寄与を
|
|
と計算することができる。ここには辺の長さを意味する。