一変量の対称なGARCHプロセスもしくは : AGARCH type1プロセスのパラメータ推定

C言語によるサンプルソースコード : 使用関数名:nag_estimate_agarchI (g13fac)

ホーム > 製品 > nAG数値計算ライブラリ > サンプルソースコード集 > 一変量の対称なGARCHプロセスもしくはAGARCH type1プロセスのパラメータ推定 (C言語/C++)

Keyword: 一変量時系列, GARCH, 非対称, パラメータ推定

概要

本サンプルは一変量の対称なGARCHプロセスもしくはAGARCH type1プロセスのパラメータ推定を行うC言語によるサンプルプログラムです。本サンプルでは nag_rand_agarchI (g05pdc)により生成される時系列を分析対象としています。

※本サンプルはnAG Cライブラリに含まれる関数 nag_estimate_agarchI() のExampleコードです。本サンプル及び関数の詳細情報は nag_estimate_agarchI のマニュアルページをご参照ください。
ご相談やお問い合わせはこちらまで

出力結果

(本関数の詳細はnag_estimate_agarchI のマニュアルページを参照)
1
2
3
4
5
6
7
8
9
10
11
12

この出力例をダウンロード
nag_estimate_agarchI (g13fac) Example Program Results 

       Parameter estimates     Standard errors       Correct values
              0.1045             (0.0486)               0.1500
              0.0884             (0.0235)               0.1000
              0.8196             (0.0433)               0.8000
             -0.7658             (0.2296)              -0.3000
              3.0051             (0.1309)               3.0000
              1.4478             (0.0779)               1.5000
              2.4681             (0.1229)               2.5000

3 step forecast =   1.1019

  • 3~10行目にパラメータ推定値、標準誤差、正しい値が出力されています。
  • 12行目には6ステップ先の予測値が出力されています。

ソースコード

(本関数の詳細はnag_estimate_agarchI のマニュアルページを参照)

※本サンプルソースコードはnAG数値計算ライブラリ(Windows, Linux, MAC等に対応)の関数を呼び出します。
サンプルのコンパイル及び実行方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

このソースコードをダウンロード
/* nag_estimate_agarchI (g13fac) Example Program.
 *
 * CLL6I261D/CLL6I261DL Version.
 *
 * Copyright 2017 Numerical Algorithms Group.
 *
 * Mark 26.1, 2017.
 *
 *
 *
 */
#include <nag.h>
#include <nag_stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <nagg05.h>
#include <nagg13.h>

#define X(I, J) x[(I) *tdx + (J)]

int main(void)
{
  /* Integer scalar and array declarations */
  Integer exit_status = 0;
  Integer i, j, k, npar, tdc, tdx, lstate, lr;
  Integer *state = 0;

  /* nAG structures and data types */
  NagError fail;
  Nag_Boolean fcall;

  /* Double scalar and array declarations */
  double *covar = 0, *cvar = 0, *et = 0, *ht = 0, *r = 0;
  double *sc = 0, *se = 0, *theta = 0, *x = 0, *yt = 0;
  double fac1, hp, lgf, xterm;

  /* Choose the base generator */
  Nag_BaseRNG genid = Nag_Basic;
  Integer subid = 0;

  /* Set the seed */
  Integer seed[] = { 1762543 };
  Integer lseed = 1;

  /* Set parameters for the (randomly generated) time series ... */
  /* Generate data assuming normally distributed errors */
  Nag_ErrorDistn dist = Nag_NormalDistn;
  double df = 0;

  /* Size of the time series */
  Integer num = 1000;

  /* MA and AR parameters */
  Integer ip = 1;
  Integer iq = 1;
  double param[] = { 0.15, 0.1, 0.8, 0.1 };

  /* Asymmetry parameter */
  double gamma = -0.3;

  /* Regression parameters */
  Integer nreg = 2;
  double mean = 3.0;
  double bx[] = { 1.5, 2.5 };
  /* ... end of parameters for (randomly generated) time series */

  /* When fitting a model to the time series ... */
  /* Include asymmetry parameter in the model */
  Integer isym = 1;

  /* Include mean in the model */
  Integer mn = 1;

  /* Use the following maaximum number of iterations and tolerance */
  Integer maxit = 50;
  double tol = 1e-12;

  /* Enforce stationary conditions */
  Nag_Garch_Stationary_Type stat_opt = Nag_Garch_Stationary_True;

  /* Estimate initial values for regression parameters */
  Nag_Garch_Est_Initial_Type est_opt = Nag_Garch_Est_Initial_True;

  /* Set the number of values to forecast from the fitted model */
  Integer nt = 3;
  /* ... end of model fitting options */

  /* Initialize the error structure */
  INIT_FAIL(fail);

  printf("nag_estimate_agarchI (g13fac) Example Program Results \n\n");

  /* Get the length of the state array */
  lstate = -1;
  nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
           fail.message);
    exit_status = 1;
    goto END;
  }

  /* Derive various amounts */
  npar = iq + ip + 1;
  tdc = npar + mn + isym + nreg;
  tdx = nreg;

  /* Calculate the size of the reference vector */
  lr = 2 * (iq + ip + 2);

  /* Allocate arrays */
  if (!(covar = nAG_ALLOC((npar + mn + isym + nreg) * tdc, double)) ||
      !(et = nAG_ALLOC(num, double)) ||
      !(ht = nAG_ALLOC(num, double)) ||
      !(sc = nAG_ALLOC(npar + mn + isym + nreg, double)) ||
      !(se = nAG_ALLOC(npar + mn + isym + nreg, double)) ||
      !(theta = nAG_ALLOC(npar + mn + isym + nreg, double)) ||
      !(state = nAG_ALLOC(lstate, Integer)) ||
      !(r = nAG_ALLOC(lr, double)) ||
      !(x = nAG_ALLOC(num * tdx, double)) ||
      !(cvar = nAG_ALLOC(nt, double)) || !(yt = nAG_ALLOC(num, double)))
  {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }

  /* Initialize the generator to a repeatable sequence */
  nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
           fail.message);
    exit_status = 1;
    goto END;
  }

  /* Set up the time dependent exogenous matrix x */
  for (i = 0; i < num; ++i) {
    fac1 = (double) (i + 1) * 0.01;
    X(i, 0) = sin(fac1) * 0.7 + 0.01;
    X(i, 1) = fac1 * 0.1 + 0.5;
  }

  /* Generate a realization of a random AGARCH I time series and discard it */
  fcall = Nag_TRUE;
  nag_rand_agarchI(dist, num, ip, iq, param, gamma, df, ht, yt, fcall, r, lr,
                   state, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_rand_agarchI (g05pdc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }

  /* Generate a realization of a random AGARCH I time series to use */
  fcall = Nag_FALSE;
  nag_rand_agarchI(dist, num, ip, iq, param, gamma, df, ht, yt, fcall, r, lr,
                   state, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_rand_agarchI (g05pdc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }

  /* Adjust the randomly generated time series to take into account for the
     exogenous matrix x */
  for (i = 0; i < num; ++i) {
    xterm = 0.0;
    for (k = 0; k < nreg; ++k)
      xterm += X(i, k) * bx[k];

    if (mn == 1)
      yt[i] = mean + xterm + yt[i];
    else
      yt[i] = xterm + yt[i];
  }

  /* Set initial estimates for the parameters */
  for (i = 0; i < npar; ++i)
    theta[i] = param[i] * 0.5;
  if (isym == 1)
    theta[npar + isym - 1] = gamma * 0.5;
  if (mn == 1)
    theta[npar + isym] = mean * 0.5;
  for (i = 0; i < nreg; ++i)
    theta[npar + isym + mn + i] = bx[i] * 0.5;

  /* nag_estimate_agarchI (g13fac).
   * Univariate time series, parameter estimation for either a
   * symmetric GARCH process or a GARCH process with asymmetry
   * of the form (epsilon_(t-1)+gamma)^2
   */
  nag_estimate_agarchI(yt, x, tdx, num, ip, iq, nreg, mn, isym, theta, se, sc,
                       covar, tdc, &hp, et, ht, &lgf, stat_opt, est_opt,
                       maxit, tol, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_estimate_agarchI (g13fac).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }

  /* Display the results */
  printf("       Parameter estimates     Standard errors       "
         "Correct values\n");
  for (j = 0; j < npar; ++j)
    printf("%20.4f             (%6.4f) %20.4f\n", theta[j], se[j], param[j]);

  if (isym)
    printf("%20.4f             (%6.4f) %20.4f\n",
           theta[npar + isym - 1], se[npar + isym - 1], gamma);
  if (mn)
    printf("%20.4f             (%6.4f) %20.4f\n", theta[npar + isym],
           se[npar + isym], mean);
  for (j = 0; j < nreg; ++j)
    printf("%20.4f             (%6.4f) %20.4f\n",
           theta[npar + isym + mn + j], se[npar + isym + mn + j], bx[j]);

  /* Now forecast nt steps ahead */
  if (isym) {
    gamma = theta[npar + isym - 1];
  }
  else {
    gamma = 0.0;
  }

  /* nag_forecast_agarchI (g13fbc).
   * Univariate time series, forecast function for either a
   * symmetric GARCH process or a GARCH process with asymmetry
   * of the form (epsilon_(t-1)+gamma)^2
   */
  nag_forecast_agarchI(num, nt, ip, iq, theta, gamma, cvar, ht, et, &fail);
  printf("\n%ld step forecast = %8.4f\n", nt, cvar[nt - 1]);

END:
  nAG_FREE(covar);
  nAG_FREE(et);
  nAG_FREE(ht);
  nAG_FREE(sc);
  nAG_FREE(se);
  nAG_FREE(theta);
  nAG_FREE(x);
  nAG_FREE(cvar);
  nAG_FREE(yt);
  nAG_FREE(state);
  nAG_FREE(r);

  return exit_status;
}


関連情報
© 日本ニューメリカルアルゴリズムズグループ株式会社 2025
Privacy Policy  /  Trademarks