Keyword: 一変量時系列, GARCH, 非対称, パラメータ推定
概要
本サンプルは一変量の対称なGARCHプロセスもしくはAGARCH type1プロセスのパラメータ推定を行うC言語によるサンプルプログラムです。本サンプルでは nag_rand_agarchI (g05pdc)により生成される時系列を分析対象としています。
※本サンプルはnAG Cライブラリに含まれる関数 nag_estimate_agarchI() のExampleコードです。本サンプル及び関数の詳細情報は nag_estimate_agarchI のマニュアルページをご参照ください。
ご相談やお問い合わせはこちらまで
出力結果
(本関数の詳細はnag_estimate_agarchI のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12
この出力例をダウンロード |
nag_estimate_agarchI (g13fac) Example Program Results Parameter estimates Standard errors Correct values 0.1045 (0.0486) 0.1500 0.0884 (0.0235) 0.1000 0.8196 (0.0433) 0.8000 -0.7658 (0.2296) -0.3000 3.0051 (0.1309) 3.0000 1.4478 (0.0779) 1.5000 2.4681 (0.1229) 2.5000 3 step forecast = 1.1019
- 3~10行目にパラメータ推定値、標準誤差、正しい値が出力されています。
- 12行目には6ステップ先の予測値が出力されています。
ソースコード
(本関数の詳細はnag_estimate_agarchI のマニュアルページを参照)
※本サンプルソースコードはnAG数値計算ライブラリ(Windows, Linux, MAC等に対応)の関数を呼び出します。
サンプルのコンパイル及び実行方法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
このソースコードをダウンロード |
/* nag_estimate_agarchI (g13fac) Example Program. * * CLL6I261D/CLL6I261DL Version. * * Copyright 2017 Numerical Algorithms Group. * * Mark 26.1, 2017. * * * */ #include <nag.h> #include <nag_stdlib.h> #include <stdio.h> #include <ctype.h> #include <math.h> #include <nagg05.h> #include <nagg13.h> #define X(I, J) x[(I) *tdx + (J)] int main(void) { /* Integer scalar and array declarations */ Integer exit_status = 0; Integer i, j, k, npar, tdc, tdx, lstate, lr; Integer *state = 0; /* nAG structures and data types */ NagError fail; Nag_Boolean fcall; /* Double scalar and array declarations */ double *covar = 0, *cvar = 0, *et = 0, *ht = 0, *r = 0; double *sc = 0, *se = 0, *theta = 0, *x = 0, *yt = 0; double fac1, hp, lgf, xterm; /* Choose the base generator */ Nag_BaseRNG genid = Nag_Basic; Integer subid = 0; /* Set the seed */ Integer seed[] = { 1762543 }; Integer lseed = 1; /* Set parameters for the (randomly generated) time series ... */ /* Generate data assuming normally distributed errors */ Nag_ErrorDistn dist = Nag_NormalDistn; double df = 0; /* Size of the time series */ Integer num = 1000; /* MA and AR parameters */ Integer ip = 1; Integer iq = 1; double param[] = { 0.15, 0.1, 0.8, 0.1 }; /* Asymmetry parameter */ double gamma = -0.3; /* Regression parameters */ Integer nreg = 2; double mean = 3.0; double bx[] = { 1.5, 2.5 }; /* ... end of parameters for (randomly generated) time series */ /* When fitting a model to the time series ... */ /* Include asymmetry parameter in the model */ Integer isym = 1; /* Include mean in the model */ Integer mn = 1; /* Use the following maaximum number of iterations and tolerance */ Integer maxit = 50; double tol = 1e-12; /* Enforce stationary conditions */ Nag_Garch_Stationary_Type stat_opt = Nag_Garch_Stationary_True; /* Estimate initial values for regression parameters */ Nag_Garch_Est_Initial_Type est_opt = Nag_Garch_Est_Initial_True; /* Set the number of values to forecast from the fitted model */ Integer nt = 3; /* ... end of model fitting options */ /* Initialize the error structure */ INIT_FAIL(fail); printf("nag_estimate_agarchI (g13fac) Example Program Results \n\n"); /* Get the length of the state array */ lstate = -1; nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Derive various amounts */ npar = iq + ip + 1; tdc = npar + mn + isym + nreg; tdx = nreg; /* Calculate the size of the reference vector */ lr = 2 * (iq + ip + 2); /* Allocate arrays */ if (!(covar = nAG_ALLOC((npar + mn + isym + nreg) * tdc, double)) || !(et = nAG_ALLOC(num, double)) || !(ht = nAG_ALLOC(num, double)) || !(sc = nAG_ALLOC(npar + mn + isym + nreg, double)) || !(se = nAG_ALLOC(npar + mn + isym + nreg, double)) || !(theta = nAG_ALLOC(npar + mn + isym + nreg, double)) || !(state = nAG_ALLOC(lstate, Integer)) || !(r = nAG_ALLOC(lr, double)) || !(x = nAG_ALLOC(num * tdx, double)) || !(cvar = nAG_ALLOC(nt, double)) || !(yt = nAG_ALLOC(num, double))) { printf("Allocation failure\n"); exit_status = -1; goto END; } /* Initialize the generator to a repeatable sequence */ nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Set up the time dependent exogenous matrix x */ for (i = 0; i < num; ++i) { fac1 = (double) (i + 1) * 0.01; X(i, 0) = sin(fac1) * 0.7 + 0.01; X(i, 1) = fac1 * 0.1 + 0.5; } /* Generate a realization of a random AGARCH I time series and discard it */ fcall = Nag_TRUE; nag_rand_agarchI(dist, num, ip, iq, param, gamma, df, ht, yt, fcall, r, lr, state, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_rand_agarchI (g05pdc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Generate a realization of a random AGARCH I time series to use */ fcall = Nag_FALSE; nag_rand_agarchI(dist, num, ip, iq, param, gamma, df, ht, yt, fcall, r, lr, state, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_rand_agarchI (g05pdc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Adjust the randomly generated time series to take into account for the exogenous matrix x */ for (i = 0; i < num; ++i) { xterm = 0.0; for (k = 0; k < nreg; ++k) xterm += X(i, k) * bx[k]; if (mn == 1) yt[i] = mean + xterm + yt[i]; else yt[i] = xterm + yt[i]; } /* Set initial estimates for the parameters */ for (i = 0; i < npar; ++i) theta[i] = param[i] * 0.5; if (isym == 1) theta[npar + isym - 1] = gamma * 0.5; if (mn == 1) theta[npar + isym] = mean * 0.5; for (i = 0; i < nreg; ++i) theta[npar + isym + mn + i] = bx[i] * 0.5; /* nag_estimate_agarchI (g13fac). * Univariate time series, parameter estimation for either a * symmetric GARCH process or a GARCH process with asymmetry * of the form (epsilon_(t-1)+gamma)^2 */ nag_estimate_agarchI(yt, x, tdx, num, ip, iq, nreg, mn, isym, theta, se, sc, covar, tdc, &hp, et, ht, &lgf, stat_opt, est_opt, maxit, tol, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_estimate_agarchI (g13fac).\n%s\n", fail.message); exit_status = 1; goto END; } /* Display the results */ printf(" Parameter estimates Standard errors " "Correct values\n"); for (j = 0; j < npar; ++j) printf("%20.4f (%6.4f) %20.4f\n", theta[j], se[j], param[j]); if (isym) printf("%20.4f (%6.4f) %20.4f\n", theta[npar + isym - 1], se[npar + isym - 1], gamma); if (mn) printf("%20.4f (%6.4f) %20.4f\n", theta[npar + isym], se[npar + isym], mean); for (j = 0; j < nreg; ++j) printf("%20.4f (%6.4f) %20.4f\n", theta[npar + isym + mn + j], se[npar + isym + mn + j], bx[j]); /* Now forecast nt steps ahead */ if (isym) { gamma = theta[npar + isym - 1]; } else { gamma = 0.0; } /* nag_forecast_agarchI (g13fbc). * Univariate time series, forecast function for either a * symmetric GARCH process or a GARCH process with asymmetry * of the form (epsilon_(t-1)+gamma)^2 */ nag_forecast_agarchI(num, nt, ip, iq, theta, gamma, cvar, ht, et, &fail); printf("\n%ld step forecast = %8.4f\n", nt, cvar[nt - 1]); END: nAG_FREE(covar); nAG_FREE(et); nAG_FREE(ht); nAG_FREE(sc); nAG_FREE(se); nAG_FREE(theta); nAG_FREE(x); nAG_FREE(cvar); nAG_FREE(yt); nAG_FREE(state); nAG_FREE(r); return exit_status; }