概要
本サンプルはFortran言語によりLAPACKルーチンZHEGVXを利用するサンプルプログラムです。
一般化エルミート固有値問題


及び

ZHEGVDの例題プログラムは一般化エルミート固有値問題

入力データ
(本ルーチンの詳細はZHEGVX のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
このデータをダウンロード |
ZHEGVX Example Program Data 4 :Value of N -3.0 3.0 :Values of VL and VU (-7.36, 0.00) ( 0.77, -0.43) (-0.64, -0.92) ( 3.01, -6.97) ( 3.49, 0.00) ( 2.19, 4.45) ( 1.90, 3.73) ( 0.12, 0.00) ( 2.88, -3.17) (-2.54, 0.00) :End of matrix A ( 3.23, 0.00) ( 1.51, -1.92) ( 1.90, 0.84) ( 0.42, 2.50) ( 3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37) ( 4.09, 0.00) ( 2.33, -0.14) ( 4.29, 0.00) :End of matrix B
出力結果
(本ルーチンの詳細はZHEGVX のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
この出力例をダウンロード |
ZHEGVX Example Program Results Number of eigenvalues found = 2 Eigenvalues -2.9936 0.5047 Selected eigenvectors 1 2 1 -0.6626 0.2835 0.2258 -0.5806 2 -0.1164 -0.3769 -0.0178 -0.3194 3 0.9098 -0.3338 -0.0000 -0.0134 4 -0.6120 0.6663 -0.5348 0.0000
ソースコード
(本ルーチンの詳細はZHEGVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
このソースコードをダウンロード |
Program zhegvx_example ! ZHEGVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen Use lapack_interfaces, Only: zhegvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Real (Kind=dp), Parameter :: zero = 0.0E+0_dp Integer, Parameter :: nb = 64, nin = 5, nout = 6 ! .. Local Scalars .. Complex (Kind=dp) :: scal Real (Kind=dp) :: abstol, vl, vu Integer :: i, ifail, il, info, iu, k, lda, ldb, ldz, lwork, m, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), b(:, :), work(:), z(:, :) Complex (Kind=dp) :: dummy(1) Real (Kind=dp), Allocatable :: rwork(:), w(:) Integer, Allocatable :: iwork(:), jfail(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, conjg, max, maxloc, nint, real ! .. Executable Statements .. Write (nout, *) 'ZHEGVX Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n lda = n ldb = n ldz = n m = n Allocate (a(lda,n), b(ldb,n), z(ldz,m), rwork(7*n), w(n), iwork(5*n), & jfail(n)) ! Read the lower and upper bounds of the interval to be searched. Read (nin, *) vl, vu ! Use routine workspace query to get optimal workspace. lwork = -1 Call zhegvx(1, 'Vectors', 'Values in range', 'Upper', n, a, lda, b, ldb, & vl, vu, il, iu, abstol, m, w, z, ldz, dummy, lwork, rwork, iwork, & jfail, info) ! Make sure that there is enough workspace for block size nb. lwork = max((nb+1)*n, nint(real(dummy(1)))) Allocate (work(lwork)) ! Read the upper triangular parts of the matrices A and B Read (nin, *)(a(i,i:n), i=1, n) Read (nin, *)(b(i,i:n), i=1, n) ! Set the absolute error tolerance for eigenvalues. With abstol ! set to zero, the default value is used instead abstol = zero ! Solve the generalized Hermitian eigenvalue problem ! A*x = lambda*B*x (itype = 1) Call zhegvx(1, 'Vectors', 'Values in range', 'Upper', n, a, lda, b, ldb, & vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, & jfail, info) If (info>=0 .And. info<=n) Then ! Print solution Write (nout, 100) 'Number of eigenvalues found =', m Write (nout, *) Write (nout, *) 'Eigenvalues' Write (nout, 110) w(1:m) Flush (nout) ! Normalize the eigenvectors, largest element real Do i = 1, m rwork(1:n) = abs(z(1:n,i)) k = maxloc(rwork(1:n), 1) scal = conjg(z(k,i))/abs(z(k,i)) z(1:n, i) = z(1:n, i)*scal End Do ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen('General', ' ', n, m, z, ldz, & 'Selected eigenvectors', ifail) If (info>0) Then Write (nout, 100) 'INFO eigenvectors failed to converge, INFO =', & info Write (nout, *) 'Indices of eigenvectors that did not converge' Write (nout, 120) jfail(1:m) End If Else If (info>n .And. info<=2*n) Then i = info - n Write (nout, 130) 'The leading minor of order ', i, & ' of B is not positive definite' Else Write (nout, 100) 'Failure in ZHEGVX. INFO =', info End If 100 Format (1X, A, I5) 110 Format (3X, (8F8.4)) 120 Format (3X, (8I8)) 130 Format (1X, A, I4, A) End Program