Program zhegvx_example ! ZHEGVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen Use lapack_interfaces, Only: zhegvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Real (Kind=dp), Parameter :: zero = 0.0E+0_dp Integer, Parameter :: nb = 64, nin = 5, nout = 6 ! .. Local Scalars .. Complex (Kind=dp) :: scal Real (Kind=dp) :: abstol, vl, vu Integer :: i, ifail, il, info, iu, k, lda, ldb, ldz, lwork, m, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), b(:, :), work(:), z(:, :) Complex (Kind=dp) :: dummy(1) Real (Kind=dp), Allocatable :: rwork(:), w(:) Integer, Allocatable :: iwork(:), jfail(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, conjg, max, maxloc, nint, real ! .. Executable Statements .. Write (nout, *) 'ZHEGVX Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n lda = n ldb = n ldz = n m = n Allocate (a(lda,n), b(ldb,n), z(ldz,m), rwork(7*n), w(n), iwork(5*n), & jfail(n)) ! Read the lower and upper bounds of the interval to be searched. Read (nin, *) vl, vu ! Use routine workspace query to get optimal workspace. lwork = -1 Call zhegvx(1, 'Vectors', 'Values in range', 'Upper', n, a, lda, b, ldb, & vl, vu, il, iu, abstol, m, w, z, ldz, dummy, lwork, rwork, iwork, & jfail, info) ! Make sure that there is enough workspace for block size nb. lwork = max((nb+1)*n, nint(real(dummy(1)))) Allocate (work(lwork)) ! Read the upper triangular parts of the matrices A and B Read (nin, *)(a(i,i:n), i=1, n) Read (nin, *)(b(i,i:n), i=1, n) ! Set the absolute error tolerance for eigenvalues. With abstol ! set to zero, the default value is used instead abstol = zero ! Solve the generalized Hermitian eigenvalue problem ! A*x = lambda*B*x (itype = 1) Call zhegvx(1, 'Vectors', 'Values in range', 'Upper', n, a, lda, b, ldb, & vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, & jfail, info) If (info>=0 .And. info<=n) Then ! Print solution Write (nout, 100) 'Number of eigenvalues found =', m Write (nout, *) Write (nout, *) 'Eigenvalues' Write (nout, 110) w(1:m) Flush (nout) ! Normalize the eigenvectors, largest element real Do i = 1, m rwork(1:n) = abs(z(1:n,i)) k = maxloc(rwork(1:n), 1) scal = conjg(z(k,i))/abs(z(k,i)) z(1:n, i) = z(1:n, i)*scal End Do ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen('General', ' ', n, m, z, ldz, & 'Selected eigenvectors', ifail) If (info>0) Then Write (nout, 100) 'INFO eigenvectors failed to converge, INFO =', & info Write (nout, *) 'Indices of eigenvectors that did not converge' Write (nout, 120) jfail(1:m) End If Else If (info>n .And. info<=2*n) Then i = info - n Write (nout, 130) 'The leading minor of order ', i, & ' of B is not positive definite' Else Write (nout, 100) 'Failure in ZHEGVX. INFO =', info End If 100 Format (1X, A, I5) 110 Format (3X, (8F8.4)) 120 Format (3X, (8I8)) 130 Format (1X, A, I4, A) End Program