複素一般化非対称固有値問題: 複素非対称行列ペアの一般化固有値と一般化複素シュール形式 : (オプションで左/右一般化シュールベクトル)

LAPACKサンプルソースコード : 使用ルーチン名:ZGGES3

ホーム > LAPACKサンプルプログラム目次 > 複素一般化非対称固有値問題 > 複素非対称行列ペアの一般化固有値と一般化複素シュール形式

概要

本サンプルはFortran言語によりLAPACKルーチンZGGES3を利用するサンプルプログラムです。

入力データ

(本ルーチンの詳細はZGGES3 のマニュアルページを参照)
1
2
3
4
5
6
7
8
9
10

このデータをダウンロード
ZGGES3 Example Program Data
  4                                                               : Value of N
  (-21.10,-22.50) ( 53.50,-50.50) (-34.50,127.50) (  7.50,  0.50)
  ( -0.46, -7.78) ( -3.50,-37.50) (-15.50, 58.50) (-10.50, -1.50)
  (  4.30, -5.50) ( 39.70,-17.10) (-68.50, 12.50) ( -7.50, -3.50)
  (  5.50,  4.40) ( 14.40, 43.30) (-32.50,-46.00) (-19.00,-32.50) : End of A
  (  1.00, -5.00) (  1.60,  1.20) ( -3.00,  0.00) (  0.00, -1.00)
  (  0.80, -0.60) (  3.00, -5.00) ( -4.00,  3.00) ( -2.40, -3.20)
  (  1.00,  0.00) (  2.40,  1.80) ( -4.00, -5.00) (  0.00, -3.00)
  (  0.00,  1.00) ( -1.80,  2.40) (  0.00, -4.00) (  4.00, -5.00) : End of B

出力結果

(本ルーチンの詳細はZGGES3 のマニュアルページを参照)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

この出力例をダウンロード
 ZGGES3 Example Program Results

 Matrix A
                      1                   2                   3
 1  (-21.1000,-22.5000) ( 53.5000,-50.5000) (-34.5000,127.5000)
 2  ( -0.4600, -7.7800) ( -3.5000,-37.5000) (-15.5000, 58.5000)
 3  (  4.3000, -5.5000) ( 39.7000,-17.1000) (-68.5000, 12.5000)
 4  (  5.5000,  4.4000) ( 14.4000, 43.3000) (-32.5000,-46.0000)
 
                      4
 1  (  7.5000,  0.5000)
 2  (-10.5000, -1.5000)
 3  ( -7.5000, -3.5000)
 4  (-19.0000,-32.5000)

 Matrix B
                      1                   2                   3
 1  (  1.0000, -5.0000) (  1.6000,  1.2000) ( -3.0000,  0.0000)
 2  (  0.8000, -0.6000) (  3.0000, -5.0000) ( -4.0000,  3.0000)
 3  (  1.0000,  0.0000) (  2.4000,  1.8000) ( -4.0000, -5.0000)
 4  (  0.0000,  1.0000) ( -1.8000,  2.4000) (  0.0000, -4.0000)
 
                      4
 1  (  0.0000, -1.0000)
 2  ( -2.4000, -3.2000)
 3  (  0.0000, -3.0000)
 4  (  4.0000, -5.0000)

 Generalized Eigenvalues
 Eigenvalues:
             1          2          3          4
 1      3.0000     4.0000     2.0000     3.0000
       -9.0000    -5.0000    -5.0000    -1.0000


ソースコード

(本ルーチンの詳細はZGGES3 のマニュアルページを参照)

※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

このソースコードをダウンロード
    Module zgges3_mod

!     ZGGES3 Example Program Module:

!     .. Implicit None Statement ..
      Implicit None
!     .. Accessibility Statements ..
      Private
      Public :: selctg
    Contains
      Function selctg(a, b)
!       .. Use Statements ..
        Use lapack_precision, Only: dp
!       .. Implicit None Statement ..
        Implicit None
!       .. Function Return Value ..
        Logical :: selctg
!       .. Scalar Arguments ..
        Complex (Kind=dp), Intent (In) :: a, b
!       .. Intrinsic Procedures ..
        Intrinsic :: abs
!       .. Executable Statements ..
        Continue

!       Dummy function - it is not called by ZGGES3 when sorting is not required.
        selctg = (abs(a)<6.0_dp*abs(b))

        Return
      End Function
    End Module
    Program zgges3_example

!     ZGGES3 Example Program Text

!     Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com

!     .. Use Statements ..
      Use blas_interfaces, Only: zgemm
      Use lapack_example_aux, Only: nagf_sort_cmplxvec_rank_rearrange, &
        nagf_sort_realvec_rank, nagf_file_print_matrix_complex_gen, &
        nagf_file_print_matrix_complex_gen_comp
      Use lapack_interfaces, Only: zgges3, zlange
      Use lapack_precision, Only: dp
      Use zgges3_mod, Only: selctg
!     .. Implicit None Statement ..
      Implicit None
!     .. Parameters ..
      Integer, Parameter :: nb = 64, nin = 5, nout = 6
!     .. Local Scalars ..
      Complex (Kind=dp) :: alph, bet
      Real (Kind=dp) :: normd, norme
      Integer :: i, ifail, info, lda, ldb, ldc, ldd, lde, ldvsl, ldvsr, lwork, &
        n, sdim
!     .. Local Arrays ..
      Complex (Kind=dp), Allocatable :: a(:, :), alpha(:), b(:, :), beta(:), &
        c(:, :), d(:, :), e(:, :), vsl(:, :), vsr(:, :), work(:)
      Complex (Kind=dp) :: wdum(1)
      Real (Kind=dp), Allocatable :: rwork(:)
      Integer, Allocatable :: irank(:)
      Logical, Allocatable :: bwork(:)
      Character (1) :: clabs(1), rlabs(1)
!     .. Intrinsic Procedures ..
      Intrinsic :: abs, all, cmplx, epsilon, max, nint, real
!     .. Executable Statements ..
      Write (nout, *) 'ZGGES3 Example Program Results'
      Write (nout, *)
      Flush (nout)
!     Skip heading in data file
      Read (nin, *)
      Read (nin, *) n
      lda = n
      ldb = n
      ldc = n
      ldd = n
      lde = n
      ldvsl = n
      ldvsr = n
      Allocate (a(lda,n), alpha(n), b(ldb,n), beta(n), c(ldc,n), d(ldd,n), &
        e(lde,n), vsl(ldvsl,n), vsr(ldvsr,n), rwork(8*n), bwork(n))

!     Use routine workspace query to get optimal workspace.
      lwork = -1
      Call zgges3('Vectors (left)', 'Vectors (right)', 'No sort', selctg, n, &
        a, lda, b, ldb, sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, wdum, &
        lwork, rwork, bwork, info)

!     Make sure that there is enough workspace for block size nb.
      lwork = max((nb+1)*n, nint(real(wdum(1))))
      Allocate (work(lwork))

!     Read in the matrices A and B
      Read (nin, *)(a(i,1:n), i=1, n)
      Read (nin, *)(b(i,1:n), i=1, n)

!     Copy A and B into D and E respectively
      d(1:n, 1:n) = a(1:n, 1:n)
      e(1:n, 1:n) = b(1:n, 1:n)

!     Print matrices A and B
!     ifail: behaviour on error exit
!            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
      ifail = 0
      Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, n, a, &
        lda, 'Bracketed', 'F8.4', 'Matrix A', 'Integer', rlabs, 'Integer', &
        clabs, 80, 0, ifail)
      Write (nout, *)
      Flush (nout)

      ifail = 0
      Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, n, b, &
        ldb, 'Bracketed', 'F8.4', 'Matrix B', 'Integer', rlabs, 'Integer', &
        clabs, 80, 0, ifail)
      Write (nout, *)
      Flush (nout)

!     Find the generalized Schur form
      Call zgges3('Vectors (left)', 'Vectors (right)', 'No sort', selctg, n, &
        a, lda, b, ldb, sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, work, &
        lwork, rwork, bwork, info)

      If (info>0) Then
        Write (nout, 100) 'Failure in ZGGES3. INFO =', info
      Else

!       Compute A - Q*S*Z^H from the factorization of (A,B) and store in
!       matrix D
        alph = cmplx(1, kind=dp)
        bet = cmplx(0, kind=dp)
        Call zgemm('N', 'N', n, n, n, alph, vsl, ldvsl, a, lda, bet, c, ldc)
        alph = cmplx(-1, kind=dp)
        bet = cmplx(1, kind=dp)
        Call zgemm('N', 'C', n, n, n, alph, c, ldc, vsr, ldvsr, bet, d, ldd)

!       Compute B - Q*T*Z^H from the factorization of (A,B) and store in
!       matrix E
        alph = cmplx(1, kind=dp)
        bet = cmplx(0, kind=dp)
        Call zgemm('N', 'N', n, n, n, alph, vsl, ldvsl, b, ldb, bet, c, ldc)
        alph = cmplx(-1, kind=dp)
        bet = cmplx(1, kind=dp)
        Call zgemm('N', 'C', n, n, n, alph, c, ldc, vsr, ldvsr, bet, e, lde)

!       Find norms of matrices D and E and warn if either is too large
        normd = zlange('O', ldd, n, d, ldd, rwork)
        norme = zlange('O', lde, n, e, lde, rwork)
        If (normd>epsilon(1.0E0_dp)**0.75_dp .Or. norme>epsilon(1.0E0_dp)** &
          0.75_dp) Then
          Write (nout, *) 'Norm of A-(Q*S*Z^H) or norm of B-(Q*T*Z^H) &
            &is much greater than 0.'
          Write (nout, *) 'Schur factorization has failed.'
        Else
!         Print generalized eigenvalues
          Write (nout, *) 'Generalized Eigenvalues'

          If (all(abs(beta(1:n))>epsilon(1.0E0_dp))) Then
            alpha(1:n) = alpha(1:n)/beta(1:n)
!           Reorder eigenvalues by descending absolute value
            rwork(1:n) = abs(alpha(1:n))
            Allocate (irank(n))
            ifail = 0
            Call nagf_sort_realvec_rank(rwork, 1, n, 'Descending', irank, &
              ifail)
            Call nagf_sort_cmplxvec_rank_rearrange(alpha, 1, n, irank, ifail)
            ifail = 0
            Call nagf_file_print_matrix_complex_gen('Gen', ' ', 1, n, alpha, &
              1, 'Eigenvalues:', ifail)
            Write (nout, *)
            Flush (nout)
          Else
            Do i = 1, n
              If (beta(i)/=0.0_dp) Then
                Write (nout, 110) i, alpha(i)/beta(i)
              Else
                Write (nout, 120) i
              End If
            End Do
          End If
        End If
      End If

100   Format (1X, A, I4)
110   Format (1X, I2, 1X, '(', 1P, E11.4, ',', E11.4, ')')
120   Format (1X, I4, 'Eigenvalue is infinite')
    End Program


ご案内
関連情報
© 日本ニューメリカルアルゴリズムズグループ株式会社 2025
Privacy Policy  /  Trademarks