Module zgges3_mod ! ZGGES3 Example Program Module: ! .. Implicit None Statement .. Implicit None ! .. Accessibility Statements .. Private Public :: selctg Contains Function selctg(a, b) ! .. Use Statements .. Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Function Return Value .. Logical :: selctg ! .. Scalar Arguments .. Complex (Kind=dp), Intent (In) :: a, b ! .. Intrinsic Procedures .. Intrinsic :: abs ! .. Executable Statements .. Continue ! Dummy function - it is not called by ZGGES3 when sorting is not required. selctg = (abs(a)<6.0_dp*abs(b)) Return End Function End Module Program zgges3_example ! ZGGES3 Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use blas_interfaces, Only: zgemm Use lapack_example_aux, Only: nagf_sort_cmplxvec_rank_rearrange, & nagf_sort_realvec_rank, nagf_file_print_matrix_complex_gen, & nagf_file_print_matrix_complex_gen_comp Use lapack_interfaces, Only: zgges3, zlange Use lapack_precision, Only: dp Use zgges3_mod, Only: selctg ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nb = 64, nin = 5, nout = 6 ! .. Local Scalars .. Complex (Kind=dp) :: alph, bet Real (Kind=dp) :: normd, norme Integer :: i, ifail, info, lda, ldb, ldc, ldd, lde, ldvsl, ldvsr, lwork, & n, sdim ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), alpha(:), b(:, :), beta(:), & c(:, :), d(:, :), e(:, :), vsl(:, :), vsr(:, :), work(:) Complex (Kind=dp) :: wdum(1) Real (Kind=dp), Allocatable :: rwork(:) Integer, Allocatable :: irank(:) Logical, Allocatable :: bwork(:) Character (1) :: clabs(1), rlabs(1) ! .. Intrinsic Procedures .. Intrinsic :: abs, all, cmplx, epsilon, max, nint, real ! .. Executable Statements .. Write (nout, *) 'ZGGES3 Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n lda = n ldb = n ldc = n ldd = n lde = n ldvsl = n ldvsr = n Allocate (a(lda,n), alpha(n), b(ldb,n), beta(n), c(ldc,n), d(ldd,n), & e(lde,n), vsl(ldvsl,n), vsr(ldvsr,n), rwork(8*n), bwork(n)) ! Use routine workspace query to get optimal workspace. lwork = -1 Call zgges3('Vectors (left)', 'Vectors (right)', 'No sort', selctg, n, & a, lda, b, ldb, sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, wdum, & lwork, rwork, bwork, info) ! Make sure that there is enough workspace for block size nb. lwork = max((nb+1)*n, nint(real(wdum(1)))) Allocate (work(lwork)) ! Read in the matrices A and B Read (nin, *)(a(i,1:n), i=1, n) Read (nin, *)(b(i,1:n), i=1, n) ! Copy A and B into D and E respectively d(1:n, 1:n) = a(1:n, 1:n) e(1:n, 1:n) = b(1:n, 1:n) ! Print matrices A and B ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, n, a, & lda, 'Bracketed', 'F8.4', 'Matrix A', 'Integer', rlabs, 'Integer', & clabs, 80, 0, ifail) Write (nout, *) Flush (nout) ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, n, b, & ldb, 'Bracketed', 'F8.4', 'Matrix B', 'Integer', rlabs, 'Integer', & clabs, 80, 0, ifail) Write (nout, *) Flush (nout) ! Find the generalized Schur form Call zgges3('Vectors (left)', 'Vectors (right)', 'No sort', selctg, n, & a, lda, b, ldb, sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, work, & lwork, rwork, bwork, info) If (info>0) Then Write (nout, 100) 'Failure in ZGGES3. INFO =', info Else ! Compute A - Q*S*Z^H from the factorization of (A,B) and store in ! matrix D alph = cmplx(1, kind=dp) bet = cmplx(0, kind=dp) Call zgemm('N', 'N', n, n, n, alph, vsl, ldvsl, a, lda, bet, c, ldc) alph = cmplx(-1, kind=dp) bet = cmplx(1, kind=dp) Call zgemm('N', 'C', n, n, n, alph, c, ldc, vsr, ldvsr, bet, d, ldd) ! Compute B - Q*T*Z^H from the factorization of (A,B) and store in ! matrix E alph = cmplx(1, kind=dp) bet = cmplx(0, kind=dp) Call zgemm('N', 'N', n, n, n, alph, vsl, ldvsl, b, ldb, bet, c, ldc) alph = cmplx(-1, kind=dp) bet = cmplx(1, kind=dp) Call zgemm('N', 'C', n, n, n, alph, c, ldc, vsr, ldvsr, bet, e, lde) ! Find norms of matrices D and E and warn if either is too large normd = zlange('O', ldd, n, d, ldd, rwork) norme = zlange('O', lde, n, e, lde, rwork) If (normd>epsilon(1.0E0_dp)**0.75_dp .Or. norme>epsilon(1.0E0_dp)** & 0.75_dp) Then Write (nout, *) 'Norm of A-(Q*S*Z^H) or norm of B-(Q*T*Z^H) & &is much greater than 0.' Write (nout, *) 'Schur factorization has failed.' Else ! Print generalized eigenvalues Write (nout, *) 'Generalized Eigenvalues' If (all(abs(beta(1:n))>epsilon(1.0E0_dp))) Then alpha(1:n) = alpha(1:n)/beta(1:n) ! Reorder eigenvalues by descending absolute value rwork(1:n) = abs(alpha(1:n)) Allocate (irank(n)) ifail = 0 Call nagf_sort_realvec_rank(rwork, 1, n, 'Descending', irank, & ifail) Call nagf_sort_cmplxvec_rank_rearrange(alpha, 1, n, irank, ifail) ifail = 0 Call nagf_file_print_matrix_complex_gen('Gen', ' ', 1, n, alpha, & 1, 'Eigenvalues:', ifail) Write (nout, *) Flush (nout) Else Do i = 1, n If (beta(i)/=0.0_dp) Then Write (nout, 110) i, alpha(i)/beta(i) Else Write (nout, 120) i End If End Do End If End If End If 100 Format (1X, A, I4) 110 Format (1X, I2, 1X, '(', 1P, E11.4, ',', E11.4, ')') 120 Format (1X, I4, 'Eigenvalue is infinite') End Program