#include <nagdmc.h>
/*
handle_info() prints to screen information based on the value of the info
parameter.
*/
int
handle_info(const char func[], int info);
/*
step_through() is the function as described in the function document
nagdmc_entropy_tree.pdf
*/
void
step_through(long node);
int
main(void) {
const char file[] = {"wisc.dat"};
const char savefile[] = {"entropy_tree_save"};
long rec1 = 0;
long nvar = 10;
long nrec = 683;
long dblk = 683;
double *data = 0;
long nxvar = 0;
long *xvar = 0;
long yvar = 9;
long ncat[] = {0,0,0,0,0,0,0,0,0,2};
long cat[] = {1,2};
long mnc = 10;
long iproot = 0;
long *res = 0;
double *prob = 0;
int info = 0;
int optrand = 0;
long iseed = -1;
FILE *fp = 0;
long i, j, correct = 0;
/*
Allocate memory for data and load data values.
*/
if (!(data = (double *)malloc(dblk*nvar * sizeof(double)))) {
printf(" Memory allocation failure.\n\n");
return 2;
}
if ((fp = fopen(file,"r")) == 0) {
printf(" Data file named %s was not found.\n\n",file);
return 2;
}
for (i=0; i<dblk; ++i) {
for (j=0; j<nvar; ++j)
fscanf(fp,"%lf ",&data[i*nvar+j]);
}
fclose(fp);
/*
Compute classification tree by using entropy criterion.
*/
nagdmc_entropy_tree(rec1,nvar,nrec,dblk,data,nxvar,xvar,yvar,ncat,cat,mnc,
&iproot,&info);
if (handle_info("nagdmc_entropy_tree",info)) {
free(data);
return 2;
}
/*
Pessimistic error pruning of tree lattice.
*/
nagdmc_prune_entropy_tree(iproot);
if (handle_info("nagdmc_prune_entropy_tree",info)) {
free(data);
return 2;
}
/*
Explanatory code from function doc.
*/
step_through(iproot);
/*
The example of saving and re-loading the tree lattice now follows.
*/
/*
Save tree.
*/
nagdmc_save_entropy_tree(iproot,savefile,&info);
if (handle_info("nagdmc_save_entropy_tree",info)) {
free(data);
return 2;
}
/*
Free memory containing the tree.
*/
nagdmc_free_entropy_tree(iproot);
/*
Re-set cast of memory location of root node.
*/
iproot = 0;
/*
Load the tree into memory from the saved file.
*/
nagdmc_load_entropy_tree(savefile,&iproot,&info);
if (handle_info("nagdmc_load_entropy_tree",info)) {
free(data);
return 2;
}
/*
Calculate predictions for training data using the tree.
*/
/*
Allocate memory for return arrays.
*/
if (!(res = (long *)malloc(nrec * sizeof(long)))) {
printf(" Memory allocation failure.\n\n");
return 2;
}
if (!(prob = (double *)malloc(nrec * sizeof(double)))) {
printf(" Memory allocation failure.\n\n");
return 2;
}
nagdmc_predict_entropy_tree(rec1,nvar,nrec,dblk,data,iproot,optrand,iseed,
res,prob,&info);
if (handle_info("nagdmc_predict_entropy_tree",info)) {
free(data);
free(res);
free(prob);
return 2;
}
printf("\n\n Decision tree classifications.\n"
"------------------------------");
printf("\n\n Datum\tClassification\n");
for (i=0; i<nrec; ++i) {
printf(" %3li\t%8li\t(%4.3f)\n",i,res[i],prob[i]);
if (res[i] == (long)data[i*nvar+yvar])
correct++;
}
printf("\n Number of correct classifications: %li.\n\n",correct);
if (iproot)
nagdmc_free_entropy_tree(iproot);
free(data);
free(res);
free(prob);
return 0;
}
void
step_through(long node) {
long i;
ENode *lnode;
lnode = (ENode *)node;
if (lnode == 0)
return;
printf("\n Node %8p"
"\n Parent %8p"
"\n No. data at node %8li"
"\n Modal class %li",
lnode,lnode->parent,lnode->ndata,lnode->modal_class);
printf("\n Class distribution at node:");
for (i=0; i<lnode->nclasses; ++i)
printf(" %li",lnode->ninclasses[i]);
if (lnode->index > 0) {
printf("\n Partition on index %li",lnode->index);
if (lnode->discrete == 0)
printf("; continuous test value: %8.4f",lnode->children[0]->value);
printf("\n");
for (i=0; i<lnode->nchildren; ++i)
step_through((long)(lnode->children[i]));
}
else
printf("\n Leaf node\n");
}
int
handle_info(const char func[], int info) {
if (info == -999)
{
printf(" Invalid licence, please contact NAG.\n\n");
return 2;
}
else if (info > 0)
{
printf(" Error code %i from %s.\n\n",info,func);
return 1;
}
else if (info < 0)
printf (" Information code %i from %s.\n\n",info,func);
return 0;
}
syntax highlighted by Code2HTML, v. 0.8.11