Bibliography
-
F. S. Acton. Numerical Methods that Usually Work. Harper and Row, New York, USA, 1970.
-
F. S. Acton. Real Computing Made Real: Preventing Errors in Scientific and Engineering Calculations.
Princeton University Press, Princeton, NJ, USA, 1996. ISBN 0-691-03663-2.
-
G. Alefeld and G. Mayer. Interval analysis: Theory and applications. J. Comput. Appl. Math., 121:
421--464, 2000.
-
E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users' Guide. SIAM,
Philadelphia, PA, USA, 3rd edition, 1999. ISBN 0-89871-447-8. (www.netlib.org/lapack/lug/).
-
D. Bindel, J. Demmel, W. Kahan, and O. Marques. On computing Givens rotations reliably and
efficiently. ACM Trans. Math. Software, 28:206--238, 2002.
-
L. S. Blackford, A. Cleary, J. Demmel, I. Dhillon, J. J. Dongarra, S. Hammarling, A. Petitet, H. Ren,
K. Stanley, and R. C. Whaley. Practical experience in the numerical dangers of heterogeneous
computing. ACM Trans. Math. Software, 23:133--147, 1997.
-
R. W. Brankin and I. Gladwell. Algorithm 771:
rksuite 90
: Fortran 90 software for ordinary
differential equation initial-value problems. ACM Trans. Math. Software, 23:402--415, 1997.
-
R. W. Brankin, I. Gladwell, and L. F. Shampine. RKSUITE: A suite of runge-kutta codes for the
initial value problem for ODEs. Softreport 92-S1, Mathematics Department, Southern Methodist
University, Dallas, TX 75275, USA, 1992.
-
R.W. Brankin, I. Gladwell, and L. F. Shampine. RKSUITE: A suite of explicit runge-kutta codes. In
R. P. Agarwal, editor, Contributions to Numerical Mathematics, pages 41--53. World Scientific,
River Edge, NJ, USA, 1993. (WSSIAA, vol. 2).
-
J. L. Britton, editor. Collected Works of A. M. Turing: Pure Mathematics. North-Holland, Amster-
dam, The Netherlands, 1992. ISBN 0-444-88059-3.
-
F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations. SIAM, Philadelphia,
PA, USA, 1996. ISBN 0-89871-358-7.
-
T. F. Chan, G. H. Golub, and R. J. LeVeque. Algorithms for computing the sample variance: Analysis
and recommendations. The American Statistician, 37:242--247, 1983.
-
R. Cools and A. Haegemans. Algorithm 824: CUBPACK: A package for automatic cubature;
framework description. ACM Trans. Math. Software, 29:287--296, 2003.
-
M. G. Cox, M. P. Dainton, and P. M. Harris. Testing spreadsheets and other packages used in
metrology: Testing functions for the calculation of standard deviation. NPL Report CMSC 07/00,
Centre for Mathematics and Scientific Computing, National Physical Laboratory, Teddington,
Middlesex TW11 0LW, UK, 2000.
-
D. S. Dodson. Corrigendum: Remark on "Algorithm 539: Basic Linear Algebra Subroutines for
FORTRAN usage". ACM Trans. Math. Software, 9:140, 1983.
-
D. S. Dodson and R. G. Grimes. Remark on algorithm 539: Basic Linear Algebra Subprograms for
Fortran usage. ACM Trans. Math. Software, 8:403--404, 1982.
-
J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN Basic
Linear Algebra Subprograms. ACM Trans. Math. Software, 14:1--32, 399, 1988a. (Algorithm 656.
See also Dongarra et al. [1988b]).
-
J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Corrigenda: "An extended set of
FORTRAN Basic Linear Algebra Subprograms". ACM Trans. Math. Software, 14:399, 1988b.
(See also Dongarra et al. [1988a]).
-
J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Software, 16:1--28, 1990. (Algorithm 679).
-
A. A. Dubrulle. A class of numerical methods for the computation of Pythagorean sums. IBM J. Res.
Develop., 27(6):582--589, November 1983.
-
G. E. Forsythe. Pitfalls in computation, or why a math book isn't enough. Amer. Math. Monthly, 9:
931--995, 1970.
-
G. E. Forsythe. What is a satisfactory quadratic equation solver. In B. Dejon and P. Henrici, editors,
Constructive Aspects of the Fundamental Theorem of Algebra, pages 53--61. Wiley, New York,
NY, USA, 1969.
-
L. Fox. How to get meaningless answers in scientific computation (and what to do about it). IMA
Bulletin, 7:296--302, 1971.
-
W. Givens. Numerical computation of the characteristic values of a real symmetric matrix. Technical
Report ORNL-1574, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA, 1954.
-
G. H. Golub. Numerical methods for solving linear least squares problems. Numer. Math., 7:
206--216, 1965.
-
G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, USA, 3rd edition, 1996. ISBN 0-8018-5414-8.
-
S. Hammarling. An introduction to the quality of computed solutions. In B. Einarsson, editor,
Accuracy and Reliability in Scientific Computing, pages 43--76. SIAM, Philadelphia, PA, USA, 2005.
(Accompanying web site for book: www.nsc.liu.se/wg25/book/).
-
G. Hargreaves. Interval analysis in MATLAB. Master's thesis, Department of Mathematics, University
of Manchester, Manchester M13 9PL, UK, 2002.
-
D. J. Higham and N. J. Higham. MATLAB Guide. SIAM, Philadelphia, PA, USA, 2000. ISBN
0-89871-469-9.
-
D. J. Higham and N. J. Higham. MATLAB Guide. SIAM, Philadelphia, PA, USA, 2nd edition, 2005.
ISBN 0-89871-578-4.
-
N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, USA,
second edition, 2002. ISBN 0-89871-521-0.
-
N. J. Higham. Can you "count" on your computer? www.maths.man.ac.uk/higham/talks/, 1998.
(Public lecture for Science Week 1998).
-
IEEE. ANSI/IEEE Standard for Binary Floating Point Arithmetic: Std 754-1985. IEEE Press, New
York, NY, USA, 1985.
-
IEEE. ANSI/IEEE Standard for Radix Independent Floating Point Arithmetic: Std 854-1987. IEEE
Press, New York, NY, USA, 1987.
-
E. Isaacson and H. B. Keller. Analysis of Numerical Methods. Wiley, New York, NY, USA, 1966.
(Reprinted with corrections and new Preface by Dover Publications, New York, 1994, ISBN 0-486
68029-0).
-
L. Knüsel. On the accuracy of statistical distributions in Microsoft Excel 97. Comput. Statist. Data
Anal., 26:375--377, 1998.
-
V. Kreinovich. Interval computations. www.cs.utep.edu/interval-comp/.
-
C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs, NJ,
USA, 1974. (Republished as Lawson and Hanson [1995]).
-
C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Classics in Applied Mathematics,
15. SIAM, Philadelphia, PA, USA, 1995. ISBN 0-89871-356-0. (Revised version of Lawson and
Hanson [1974]).
-
C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Algebra Subprograms for
FORTRAN usage. ACM Trans. Math. Software, 5:308--323, 1979. (Algorithm 539. See also Dodson
and Grimes [1982] and Dodson [1983]).
-
R. S. Martin and J. H. Wilkinson. Similarity reduction of a general matrix to Hessenberg form.
Numer. Math., 12:349--368, 1968. (See also [Wilkinson and Reinsch, 1971, pp 339--358]).
-
MathWorks. MATLAB. The Mathworks, Inc, www.mathworks.com.
-
B. D.McCullough and B.Wilson. On the accuracy of statistical procedures inMicrosoft Excel 2000
and Excel XP. Comput. Statist. Data Anal., 40:713--721, 2002.
-
B. D. McCullough and B. Wilson. On the accuracy of statistical procedures in Microsoft Excel 97.
Comput. Statist. Data Anal., 31:27--37, 1999.
-
M. Metcalf and J. K. Reid. Fortran 90/95 Explained. Oxford University Press, Oxford, UK, 1996.
-
M. Metcalf, J. K. Reid, and M. Cohen. Fortran 95/2003 Explained. Oxford University Press,
Oxford, UK, 2004. ISBN 0 19 852693 8.
-
C. Moler and D. Morrison. Replacing square roots by Pythagorean sums. IBM J. Res. Develop., 27
(6):577--581, November 1983.
-
R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, PA, USA, 1979.
-
nAG. The nAG Fortran Library Manual, Mark 20. The Numerical Algorithms Group Ltd, Wilkinson
House, Jordan Hill Road, Oxford OX2 8DR, UK., 2003.
(www.nag.com/numeric/fl/manual/html/FLlibrarymanual.asp, or
www.nag.com/numeric/fl/manual/html/FLlibrarymanual.asp).
-
nAG. The nAG Library. nAG Ltd, www.nag.com/numeric/numerical libraries.asp, or
www.nag.com/numeric/numerical libraries.asp.
-
M. L. Overton. Numerical Computing with IEEE Floating Point Arithmetic. SIAM, Philadelphia, PA,
USA, 2001. ISBN 0-89871-482-6.
-
R. Piessens, E. de Doncker-Kapenga, C. W. Überhuber, and D. K. Kahaner. QUADPACK -- A
Subroutine Package for Automatic Integration. Springer-Verlag, Berlin, Germany, 1983.
-
D. M. Priest. Efficient scaling for complex division. ACM Trans. Math. Software, 30:389--401, 2004.
-
S. M. Rump. INTLAB -- INTerval LABoratory. In T. Csendes, editor, Developments in Reliable
Computing, pages 77--104. Kluwer Academic, Dordrecht, The Netherlands, 1999.
-
L. F. Shampine and I. Gladwell. The next generation of rünge-kutta codes. In Cash J. R. and
I. Gladwell, editors, Computational Ordinary Differential Equations, pages 145--164. Oxford
University Press, Oxford, UK, 1992. (IMA Conference Series, New Series 39).
-
R. L. Smith. Algorithm 116: Complex division. Communs Ass. comput. Mach., 5:435, 1962.
-
G. W. Stewart. Matrix Algorithms: Basic Decompositions, volume I. SIAM, Philadelphia, PA,
USA, 1998. ISBN 0-89871-414-1.
-
G. W. Stewart. A note on complex division. ACM Trans. Math. Software, 11:238--241, 1985.
-
G. W. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, London, UK, 1990.
-
A. M. Turing. Rounding-off errors in matrix processes. Q. J. Mech. appl. Math., 1:287--308, 1948.
(Reprinted in Britton [1992] with summary, notes and corrections).
-
J. Vignes. A stochastic arithmetic for reliable scientific computation. Math. and Comp. in Sim., 35:
233--261, 1993.
-
J. H. Wilkinson. Rounding Errors in Algebraic Processes. Notes on Applied Science, No.32.
HMSO, London, UK, 1963. (Also published by Prentice-Hall, Englewood Cliffs, NJ, USA, 1964,
translated into Polish as Bledy Zaokragleń w Procesach Algebraicznych by PWW, Warsaw,
Poland, 1967 and translated into German as Rundungsfehler by Springer-Verlag, Berlin, Germany,
1969. Reprinted by Dover Publications, New York, 1994).
-
J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, UK, 1965.
(Also translated into Russian by Nauka, Russian Academy of Sciences, 1970).
-
J. H.Wilkinson. The perfidious polynomial. In G. H. Golub, editor, Studies in Numerical Analysis,
Volume 24, chapter 1, pages 1--28. The Mathematical Association of America, 1984. (Awarded the
Chauvenet Prize of the Mathematical Association of America).
-
J. H. Wilkinson. Error analysis revisited. IMA Bulletin, 22:192--200, 1986. (Invited lecture at
Lancaster University in honour of C. W. Clenshaw, 1985).
-
J. H. Wilkinson. Error analysis of direct methods of matrix inversion. J. ACM, 8:281--330, 1961.
-
J. H. Wilkinson. The state of the art in error analysis. nAG Newsletter, 2/85:5--28, 1985. (Invited
lecture for the nAG 1984 Annual General Meeting).
-
J. H. Wilkinson. Error analysis of floating-point computation. Numer. Math., 2:319--340, 1960.
-
J. H. Wilkinson and C. Reinsch, editors. Handbook for Automatic Computation, Vol.2, Linear
Algebra. Springer-Verlag, Berlin, Germany, 1971.