概要
本サンプルはFortran言語によりLAPACKルーチンZHEEVRを利用するサンプルプログラムです。
エルミート行列の指標が![$ [2, 3]$](img/img78.gif)

必要とされ利用されたワークスペースの情報も合わせて出力されます。
入力データ
(本ルーチンの詳細はZHEEVR のマニュアルページを参照)1 2 3 4 5 6 7 8
このデータをダウンロード |
ZHEEVR Example Program Data 4 2 3 :Values of N, IL and IU (1.0, 0.0) (2.0,-1.0) (3.0,-1.0) (4.0,-1.0) (2.0, 0.0) (3.0,-2.0) (4.0,-2.0) (3.0, 0.0) (4.0,-3.0) (4.0, 0.0) :End of matrix A
出力結果
(本ルーチンの詳細はZHEEVR のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
この出力例をダウンロード |
ZHEEVR Example Program Results Selected eigenvalues -0.6886 1.1412 Warning: Floating invalid operation occurred Warning: Floating divide by zero occurred Selected eigenvectors 1 2 1 0.6470 0.0179 0.0000 -0.4453 2 -0.4984 0.5706 -0.1130 -0.0000 3 0.2949 -0.1530 0.3165 0.5273 4 -0.2241 -0.2118 -0.2878 -0.3598
ソースコード
(本ルーチンの詳細はZHEEVR のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
このソースコードをダウンロード |
Program zheevr_example ! ZHEEVR Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use blas_interfaces, Only: zscal Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen Use lapack_interfaces, Only: zheevr Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Real (Kind=dp), Parameter :: zero = 0.0E+0_dp Integer, Parameter :: nb = 64, nin = 5, nout = 6 ! .. Local Scalars .. Real (Kind=dp) :: abstol, vl, vu Integer :: i, ifail, il, info, iu, k, lda, ldz, liwork, lrwork, lwork, & m, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), work(:), z(:, :) Complex (Kind=dp) :: dummy(1) Real (Kind=dp) :: rdum(1) Real (Kind=dp), Allocatable :: rwork(:), w(:) Integer :: idum(1) Integer, Allocatable :: isuppz(:), iwork(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, cmplx, conjg, max, maxloc, nint, real ! .. Executable Statements .. Write (nout, *) 'ZHEEVR Example Program Results' Write (nout, *) ! Skip heading in data file and read N and the lower and upper ! indices of the smallest and largest eigenvalues to be found Read (nin, *) Read (nin, *) n, il, iu lda = n ldz = n m = n Allocate (a(lda,n), z(ldz,m), w(n), isuppz(2*m)) ! Use routine workspace query to get optimal workspace. lwork = -1 liwork = -1 lrwork = -1 Call zheevr('Vectors', 'I', 'Upper', n, a, lda, vl, vu, il, iu, abstol, & m, w, z, ldz, isuppz, dummy, lwork, rdum, lrwork, idum, liwork, info) ! Make sure that there is enough workspace for block size nb. lwork = max((nb+1)*n, nint(real(dummy(1)))) lrwork = max(24*n, nint(rdum(1))) liwork = max(10*n, idum(1)) Allocate (work(lwork), rwork(lrwork), iwork(liwork)) ! Read the upper triangular part of the matrix A from data file Read (nin, *)(a(i,i:n), i=1, n) ! Set the absolute error tolerance for eigenvalues. With ABSTOL ! set to zero, the default value is used instead abstol = zero ! Solve the symmetric eigenvalue problem Call zheevr('Vectors', 'I', 'Upper', n, a, lda, vl, vu, il, iu, abstol, & m, w, z, ldz, isuppz, work, lwork, rwork, lrwork, iwork, liwork, info) If (info==0) Then ! Print solution Write (nout, *) 'Selected eigenvalues' Write (nout, 100) w(1:m) Flush (nout) ! Normalize the eigenvectors so that the element of largest absolute ! value is real. Do i = 1, m rwork(1:n) = abs(z(1:n,i)) k = maxloc(rwork(1:n), 1) Call zscal(n, conjg(z(k,i))/cmplx(abs(z(k,i)),kind=dp), z(1,i), 1) End Do ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen('General', ' ', n, m, z, ldz, & 'Selected eigenvectors', ifail) Else Write (nout, 110) 'Failure in ZHEEVR. INFO =', info End If 100 Format (3X, (8F8.4)) 110 Format (1X, A, I5) End Program