概要
本サンプルはFortran言語によりLAPACKルーチンZHBGVXを利用するサンプルプログラムです。
一般化帯エルミート固有値問題
![$ (0.0, 2.0]$](img/img101.gif)

及び

入力データ
(本ルーチンの詳細はZHBGVX のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
このデータをダウンロード |
ZHBGVX Example Program Data 4 2 1 :Values of N, KA and KB 0.0 2.0 :Values of VL and VU (-1.13, 0.00) ( 1.94,-2.10) (-1.40, 0.25) (-1.91, 0.00) (-0.82,-0.89) (-0.67, 0.34) (-1.87, 0.00) (-1.10,-0.16) ( 0.50, 0.00) :End of matrix A ( 9.89, 0.00) ( 1.08,-1.73) ( 1.69, 0.00) (-0.04, 0.29) ( 2.65, 0.00) (-0.33, 2.24) ( 2.17, 0.00) :End of matrix B
出力結果
(本ルーチンの詳細はZHBGVX のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
この出力例をダウンロード |
ZHBGVX Example Program Results Number of eigenvalues found = 2 Eigenvalues 0.1603 1.7712 Selected eigenvectors 1 2 1 0.1908 0.0494 0.0137 -0.0045 2 0.1413 0.2505 0.1012 0.4427 3 -0.0437 -0.9705 -0.0905 0.0679 4 -0.2135 0.0606 0.2880 -1.3227
ソースコード
(本ルーチンの詳細はZHBGVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
このソースコードをダウンロード |
Program zhbgvx_example ! ZHBGVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen Use lapack_interfaces, Only: zhbgvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Real (Kind=dp), Parameter :: zero = 0.0E+0_dp Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Real (Kind=dp) :: abstol, vl, vu Integer :: i, ifail, il, info, iu, j, ka, kb, ldab, ldbb, ldq, ldz, m, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: ab(:, :), bb(:, :), q(:, :), work(:), & z(:, :) Real (Kind=dp), Allocatable :: rwork(:), w(:) Integer, Allocatable :: iwork(:), jfail(:) ! .. Intrinsic Procedures .. Intrinsic :: max, min ! .. Executable Statements .. Write (nout, *) 'ZHBGVX Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n, ka, kb ldab = ka + 1 ldbb = kb + 1 ldq = n ldz = n m = n Allocate (ab(ldab,n), bb(ldbb,n), q(ldq,n), work(n), z(ldz,m), & rwork(7*n), w(n), iwork(5*n), jfail(n)) ! Read the lower and upper bounds of the interval to be searched, ! and read the upper or lower triangular parts of the matrices A ! and B from data file Read (nin, *) vl, vu If (uplo=='U') Then Read (nin, *)((ab(ka+1+i-j,j),j=i,min(n,i+ka)), i=1, n) Read (nin, *)((bb(kb+1+i-j,j),j=i,min(n,i+kb)), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ab(1+i-j,j),j=max(1,i-ka),i), i=1, n) Read (nin, *)((bb(1+i-j,j),j=max(1,i-kb),i), i=1, n) End If ! Set the absolute error tolerance for eigenvalues. With abstol ! set to zero, the default value is used instead abstol = zero ! Solve the generalized symmetric eigenvalue problem ! A*x = lambda*B*x Call zhbgvx('Vectors', 'Values in range', uplo, n, ka, kb, ab, ldab, bb, & ldbb, q, ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork, & iwork, jfail, info) If (info>=0 .And. info<=n) Then ! Print solution Write (nout, 100) 'Number of eigenvalues found =', m Write (nout, *) Write (nout, *) 'Eigenvalues' Write (nout, 110) w(1:m) Flush (nout) ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen('General', ' ', n, m, z, ldz, & 'Selected eigenvectors', ifail) If (info>0) Then Write (nout, 100) 'INFO eigenvectors failed to converge, INFO =', & info Write (nout, *) 'Indices of eigenvectors that did not converge' Write (nout, 120) jfail(1:m) End If Else If (info>n .And. info<=2*n) Then i = info - n Write (nout, 130) 'The leading minor of order ', i, & ' of B is not positive definite' Else Write (nout, 100) 'Failure in ZHBGVX. INFO =', info End If 100 Format (1X, A, I5) 110 Format (3X, (8F8.4)) 120 Format (3X, (8I8)) 130 Format (1X, A, I4, A) End Program