Program zggev3_example
! ZGGEV3 Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use blas_interfaces, Only: dznrm2
Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen, &
nagf_sort_cmplxvec_rank_rearrange, nagf_sort_realvec_rank
Use lapack_interfaces, Only: zggev3
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Complex (Kind=dp) :: scal
Integer :: i, ifail, info, j, k, lda, ldb, ldvr, lwork, n
! .. Local Arrays ..
Complex (Kind=dp), Allocatable :: a(:, :), alpha(:), b(:, :), beta(:), &
temp(:), vr(:, :), work(:)
Complex (Kind=dp) :: dummy(1, 1)
Real (Kind=dp), Allocatable :: rwork(:)
Integer, Allocatable :: irank(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, all, conjg, epsilon, maxloc, nint, real
! .. Executable Statements ..
Write (nout, *) 'ZGGEV3 Example Program Results'
Write (nout, *)
Flush (nout)
! Skip heading in data file
Read (nin, *)
Read (nin, *) n
lda = n
ldb = n
ldvr = n
Allocate (a(lda,n), alpha(n), b(ldb,n), beta(n), vr(ldvr,n), rwork(8*n))
! Use routine workspace query to get optimal workspace.
lwork = -1
Call zggev3('No left vectors', 'Vectors (right)', n, a, lda, b, ldb, &
alpha, beta, dummy, 1, vr, ldvr, dummy, lwork, rwork, info)
lwork = nint(real(dummy(1,1)))
Allocate (work(lwork))
! Read in the matrices A and B
Read (nin, *)(a(i,1:n), i=1, n)
Read (nin, *)(b(i,1:n), i=1, n)
! Solve the generalized eigenvalue problem
Call zggev3('No left vectors', 'Vectors (right)', n, a, lda, b, ldb, &
alpha, beta, dummy, 1, vr, ldvr, work, lwork, rwork, info)
If (info>0) Then
Write (nout, *)
Write (nout, 100) 'Failure in ZGGEV3. INFO =', info
Else If (all(abs(beta(1:n))>epsilon(1.0E0_dp))) Then
! Re-normalize the eigenvectors, largest absolute element real
Do i = 1, n
rwork(1:n) = abs(vr(1:n,i))
k = maxloc(rwork(1:n), 1)
scal = conjg(vr(k,i))/rwork(k)/dznrm2(n, vr(1,i), 1)
vr(1:n, i) = vr(1:n, i)*scal
End Do
alpha(1:n) = alpha(1:n)/beta(1:n)
! Reorder eigenvalues by descending absolute value
rwork(1:n) = abs(alpha(1:n))
Allocate (irank(n), temp(n))
ifail = 0
Call nagf_sort_realvec_rank(rwork, 1, n, 'Descending', irank, ifail)
Call nagf_sort_cmplxvec_rank_rearrange(alpha, 1, n, irank, ifail)
! Reorder eigenvectors accordingly
Do j = 1, n
temp(1:n) = vr(j, 1:n)
Call nagf_sort_cmplxvec_rank_rearrange(temp, 1, n, irank, ifail)
vr(j, 1:n) = temp(1:n)
End Do
ifail = 0
Call nagf_file_print_matrix_complex_gen('Gen', ' ', 1, n, alpha, 1, &
'Eigenvalues:', ifail)
Write (nout, *)
Flush (nout)
Call nagf_file_print_matrix_complex_gen('Gen', ' ', n, n, vr, ldvr, &
'Right Eigenvectors (columns):', ifail)
Else
Write (nout, *) 'Some of the eigenvalues are infinite.'
Write (nout, *)
Flush (nout)
ifail = 0
Call nagf_file_print_matrix_complex_gen('Gen', ' ', 1, n, alpha, 1, &
'Alpha', ifail)
Call nagf_file_print_matrix_complex_gen('Gen', ' ', 1, n, beta, 1, &
'Beta', ifail)
End If
100 Format (1X, A, I4)
End Program