概要
本サンプルはFortran言語によりLAPACKルーチンZGESVXを利用するサンプルプログラムです。
以下の式を解きます。


及び

解のエラー推定値、スケーリングについての情報、スケーリングされた行列


入力データ
(本ルーチンの詳細はZGESVX のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13
このデータをダウンロード |
ZGESVX Example Program Data 4 2 :Values of N and NRHS (-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92) (-1.70,-14.10) ( 33.10, -1.50) (-1.50,13.40) (12.90,13.80) (-3.29, -2.39) ( -1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35) ( 2.41, 0.39) ( -0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A (26.26, 51.78) ( 31.32, -6.70) (64.30,-86.80) (158.60,-14.20) (-5.75, 25.31) ( -2.15, 30.19) ( 1.16, 2.57) ( -2.56, 7.55) :End of matrix B
出力結果
(本ルーチンの詳細はZGESVX のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
この出力例をダウンロード |
ZGESVX Example Program Results Solution(s) 1 2 1 ( 1.0000, 1.0000) (-1.0000,-2.0000) 2 ( 2.0000,-3.0000) ( 5.0000, 1.0000) 3 (-4.0000,-5.0000) (-3.0000, 4.0000) 4 ( 0.0000, 6.0000) ( 2.0000,-3.0000) Backward errors (machine-dependent) 5.3E-17 4.8E-17 Estimated forward error bounds (machine-dependent) 5.8E-14 7.4E-14 A has been row scaled as diag(R)*A Reciprocal condition number estimate of scaled matrix 1.0E-02 Estimate of reciprocal pivot growth factor 8.3E-01
ソースコード
(本ルーチンの詳細はZGESVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
このソースコードをダウンロード |
Program zgesvx_example ! ZGESVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen_comp Use lapack_interfaces, Only: zgesvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 ! .. Local Scalars .. Real (Kind=dp) :: rcond Integer :: i, ifail, info, lda, ldaf, ldb, ldx, n, nrhs Character (1) :: equed ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), af(:, :), b(:, :), work(:), & x(:, :) Real (Kind=dp), Allocatable :: berr(:), c(:), ferr(:), r(:), rwork(:) Integer, Allocatable :: ipiv(:) Character (1) :: clabs(1), rlabs(1) ! .. Executable Statements .. Write (nout, *) 'ZGESVX Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n, nrhs lda = n ldaf = n ldb = n ldx = n Allocate (a(lda,n), af(ldaf,n), b(ldb,nrhs), work(2*n), x(ldx,nrhs), & berr(nrhs), c(n), ferr(nrhs), r(n), rwork(2*n), ipiv(n)) ! Read A and B from data file Read (nin, *)(a(i,1:n), i=1, n) Read (nin, *)(b(i,1:nrhs), i=1, n) ! Solve the equations AX = B for X Call zgesvx('Equilibrate', 'No transpose', n, nrhs, a, lda, af, ldaf, & ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, & info) If ((info==0) .Or. (info==n+1)) Then ! Print solution, error bounds, condition number, the form ! of equilibration and the pivot growth factor ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, nrhs, & x, ldx, 'Bracketed', 'F7.4', 'Solution(s)', 'Integer', rlabs, & 'Integer', clabs, 80, 0, ifail) Write (nout, *) Write (nout, *) 'Backward errors (machine-dependent)' Write (nout, 100) berr(1:nrhs) Write (nout, *) Write (nout, *) 'Estimated forward error bounds (machine-dependent)' Write (nout, 100) ferr(1:nrhs) Write (nout, *) If (equed=='N') Then Write (nout, *) 'A has not been equilibrated' Else If (equed=='R') Then Write (nout, *) 'A has been row scaled as diag(R)*A' Else If (equed=='C') Then Write (nout, *) 'A has been column scaled as A*diag(C)' Else If (equed=='B') Then Write (nout, *) & 'A has been row and column scaled as diag(R)*A*diag(C)' End If Write (nout, *) Write (nout, *) & 'Reciprocal condition number estimate of scaled matrix' Write (nout, 100) rcond Write (nout, *) Write (nout, *) 'Estimate of reciprocal pivot growth factor' Write (nout, 100) rwork(1) If (info==n+1) Then Write (nout, *) Write (nout, *) 'The matrix A is singular to working precision' End If Else Write (nout, 110) 'The (', info, ',', info, ')', & ' element of the factor U is zero' End If 100 Format ((3X,1P,7E11.1)) 110 Format (1X, A, I3, A, I3, A, A) End Program