概要
本サンプルはFortran言語によりLAPACKルーチンZGESVDを利用するサンプルプログラムです。
6x4の行列の特異値と左および右特異ベクトルを求めます。
計算された特異値と特異ベクトルの誤差限界近似値も合わせて求めます。
ZGESDDの例題プログラムは の場合の特異値分解を示します。
入力データ
(本ルーチンの詳細はZGESVD のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13
このデータをダウンロード |
ZGESVD Example Program Data 6 4 : m and n ( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41) (-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56) ( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60) (-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20) ( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59) ( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) : Matrix A(1:m,1:n) ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) ( 1.00, 0.00) : RHS b(1:n)
出力結果
(本ルーチンの詳細はZGESVD のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13
この出力例をダウンロード |
ZGESVD Example Program Results Singular values of A: 3.9994 3.0003 1.9944 0.9995 Least squares solution: ( -0.0719, -0.2761) ( 0.6796, 0.4326) ( -0.3832, -0.5447) ( 0.0096, -0.3489) Norm of Residual: 1.5266
ソースコード
(本ルーチンの詳細はZGESVD のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
このソースコードをダウンロード |
Program zgesvd_example ! ZGESVD Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_interfaces, Only: zgesvd Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nb = 64, nin = 5, nout = 6, prerr = 0 ! .. Local Scalars .. Integer :: i, info, lda, ldu, ldvt, lwork, m, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), a_copy(:, :), b(:), u(:, :), & vt(:, :), work(:) Complex (Kind=dp) :: dummy(1, 1) Real (Kind=dp), Allocatable :: rwork(:), s(:) ! .. Intrinsic Procedures .. Intrinsic :: max, min, nint, real ! .. Executable Statements .. Write (nout, *) 'ZGESVD Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) m, n lda = m ldu = m ldvt = n Allocate (a(lda,n), a_copy(m,n), s(n), u(ldu,m), vt(ldvt,n), b(m), & rwork(5*n)) ! Read the m by n matrix A from data file Read (nin, *)(a(i,1:n), i=1, m) ! Read the right hand side of the linear system Read (nin, *) b(1:m) a_copy(1:m, 1:n) = a(1:m, 1:n) ! Use routine workspace query to get optimal workspace. lwork = -1 Call zgesvd('A', 'S', m, n, a, lda, s, u, ldu, vt, ldvt, dummy, lwork, & rwork, info) ! Make sure that there is enough workspace for block size nb. lwork = max(m+3*n+nb*(m+n), nint(real(dummy(1,1)))) Allocate (work(lwork)) ! Compute the singular values and left and right singular vectors ! of A. Call zgesvd('A', 'S', m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, & rwork, info) If (info/=0) Then Write (nout, 100) 'Failure in ZGESVD. INFO =', info 100 Format (1X, A, I4) Go To 120 End If ! Print the significant singular values of A Write (nout, *) 'Singular values of A:' Write (nout, 110) s(1:min(m,n)) 110 Format (1X, 4(3X,F11.4)) If (prerr>0) Then Call compute_error_bounds(m, n, s) End If If (m>n) Then ! Compute V*Inv(S)*U^T * b to get least squares solution. Call compute_least_squares(m, n, a_copy, m, u, ldu, vt, ldvt, s, b) End If 120 Continue Contains Subroutine compute_least_squares(m, n, a, lda, u, ldu, vt, ldvt, s, b) ! .. Use Statements .. Use blas_interfaces, Only: dznrm2, zgemv ! .. Implicit None Statement .. Implicit None ! .. Scalar Arguments .. Integer, Intent (In) :: lda, ldu, ldvt, m, n ! .. Array Arguments .. Complex (Kind=dp), Intent (In) :: a(lda, n), u(ldu, m), vt(ldvt, n) Complex (Kind=dp), Intent (Inout) :: b(m) Real (Kind=dp), Intent (In) :: s(n) ! .. Local Scalars .. Complex (Kind=dp) :: alpha, beta Real (Kind=dp) :: norm ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: x(:), y(:) ! .. Intrinsic Procedures .. Intrinsic :: allocated, cmplx ! .. Executable Statements .. Allocate (x(n), y(n)) ! Compute V*Inv(S)*U^H * b to get least squares solution. ! y = U^T b alpha = cmplx(1.0_dp, 0.0_dp, kind=dp) beta = cmplx(0.0_dp, 0.0_dp, kind=dp) Call zgemv('C', m, n, alpha, u, ldu, b, 1, beta, y, 1) y(1:n) = y(1:n)/s(1:n) ! x = V y Call zgemv('C', n, n, alpha, vt, ldvt, y, 1, beta, x, 1) Write (nout, *) Write (nout, *) 'Least squares solution:' Write (nout, 100) x(1:n) ! Find norm of residual ||b-Ax||. alpha = cmplx(-1.0_dp, 0.0_dp, kind=dp) beta = cmplx(1._dp, 0.0_dp, kind=dp) Call zgemv('N', m, n, alpha, a, lda, x, 1, beta, b, 1) norm = dznrm2(m, b, 1) Write (nout, *) Write (nout, *) 'Norm of Residual:' Write (nout, 110) norm If (allocated(x)) Then Deallocate (x) End If If (allocated(y)) Then Deallocate (y) End If 100 Format (4X, '(', F8.4, ',', F8.4, ')') 110 Format (4X, F11.4) End Subroutine Subroutine compute_error_bounds(m, n, s) ! Error estimates for singular values and vectors is computed ! and printed here. ! .. Use Statements .. Use lapack_interfaces, Only: ddisna Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Scalar Arguments .. Integer, Intent (In) :: m, n ! .. Array Arguments .. Real (Kind=dp), Intent (In) :: s(n) ! .. Local Scalars .. Real (Kind=dp) :: eps, serrbd Integer :: i, info ! .. Local Arrays .. Real (Kind=dp), Allocatable :: rcondu(:), rcondv(:), uerrbd(:), & verrbd(:) ! .. Intrinsic Procedures .. Intrinsic :: epsilon ! .. Executable Statements .. Allocate (rcondu(n), rcondv(n), uerrbd(n), verrbd(n)) ! Get the machine precision, EPS and compute the approximate ! error bound for the computed singular values. Note that for ! the 2-norm, S(1) = norm(A) eps = epsilon(1.0E0_dp) serrbd = eps*s(1) ! Call DDISNA to estimate reciprocal condition ! numbers for the singular vectors Call ddisna('Left', m, n, s, rcondu, info) Call ddisna('Right', m, n, s, rcondv, info) ! Compute the error estimates for the singular vectors Do i = 1, n uerrbd(i) = serrbd/rcondu(i) verrbd(i) = serrbd/rcondv(i) End Do ! Print the approximate error bounds for the singular values ! and vectors Write (nout, *) Write (nout, *) 'Error estimate for the singular values' Write (nout, 100) serrbd Write (nout, *) Write (nout, *) 'Error estimates for the left singular vectors' Write (nout, 100) uerrbd(1:n) Write (nout, *) Write (nout, *) 'Error estimates for the right singular vectors' Write (nout, 100) verrbd(1:n) 100 Format (4X, 1P, 6E11.1) End Subroutine End Program