Program zhpgvd_example ! ZHPGVD Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_interfaces, Only: zhpgvd, zlanhp, ztpcon Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Real (Kind=dp) :: anorm, bnorm, eps, rcond, rcondb, t1 Integer :: aplen, i, info, j, liwork, lrwork, lwork, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: ap(:), bp(:), work(:) Complex (Kind=dp) :: dummy(1, 1) Real (Kind=dp), Allocatable :: eerbnd(:), rwork(:), w(:) Real (Kind=dp) :: rdum(1) Integer :: idum(1) Integer, Allocatable :: iwork(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, epsilon, max, nint, real ! .. Executable Statements .. Write (nout, *) 'ZHPGVD Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n aplen = (n*(n+1))/2 Allocate (ap(aplen), bp(aplen), eerbnd(n), w(n)) ! Use routine workspace query to get optimal workspace. lwork = -1 liwork = -1 lrwork = -1 Call zhpgvd(2, 'No vectors', uplo, n, ap, bp, w, dummy, 1, dummy, lwork, & rdum, lrwork, idum, liwork, info) ! Make sure that there is at least the minimum workspace lwork = max(2*n, nint(real(dummy(1,1)))) lrwork = max(n, nint(rdum(1))) liwork = max(1, idum(1)) Allocate (work(lwork), rwork(lrwork), iwork(liwork)) ! Read the upper or lower triangular parts of the matrices A and ! B from data file If (uplo=='U') Then Read (nin, *)((ap(i+(j*(j-1))/2),j=i,n), i=1, n) Read (nin, *)((bp(i+(j*(j-1))/2),j=i,n), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ap(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) Read (nin, *)((bp(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) End If ! Compute the one-norms of the symmetric matrices A and B anorm = zlanhp('One norm', uplo, n, ap, rwork) bnorm = zlanhp('One norm', uplo, n, bp, rwork) ! Solve the generalized symmetric eigenvalue problem ! A*B*x = lambda*x (itype = 2) Call zhpgvd(2, 'No vectors', uplo, n, ap, bp, w, dummy, 1, work, lwork, & rwork, lrwork, iwork, liwork, info) If (info==0) Then ! Print solution Write (nout, *) 'Eigenvalues' Write (nout, 100) w(1:n) ! Call ZTPCON to estimate the reciprocal condition ! number of the Cholesky factor of B. Note that: ! cond(B) = 1/rcond**2. ZTPCON requires WORK and RWORK to be ! of length at least 2*n and n respectively Call ztpcon('One norm', uplo, 'Non-unit', n, bp, rcond, work, rwork, & info) ! Print the reciprocal condition number of B rcondb = rcond**2 Write (nout, *) Write (nout, *) 'Estimate of reciprocal condition number for B' Write (nout, 110) rcondb ! Get the machine precision, eps, and if rcondb is not less ! than eps**2, compute error estimates for the eigenvalues eps = epsilon(1.0E0_dp) If (rcond>=eps) Then t1 = anorm*bnorm Do i = 1, n eerbnd(i) = t1 + abs(w(i))/rcondb End Do ! Print the approximate error bounds for the eigenvalues Write (nout, *) Write (nout, *) 'Error estimates (relative to machine precision)' Write (nout, *) 'for the eigenvalues:' Write (nout, 110) eerbnd(1:n) Else Write (nout, *) Write (nout, *) 'B is very ill-conditioned, error ', & 'estimates have not been computed' End If Else If (info>n .And. info<=2*n) Then i = info - n Write (nout, 120) 'The leading minor of order ', i, & ' of B is not positive definite' Else Write (nout, 130) 'Failure in ZHPGVD. INFO =', info End If 100 Format (3X, (6F11.4)) 110 Format (4X, 1P, 6E11.1) 120 Format (1X, A, I4, A) 130 Format (1X, A, I4) End Program