Program zhpevx_example ! ZHPEVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use blas_interfaces, Only: dznrm2 Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen Use lapack_interfaces, Only: zhpevx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Real (Kind=dp), Parameter :: zero = 0.0E+0_dp Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Complex (Kind=dp) :: scal Real (Kind=dp) :: abstol, vl, vu Integer :: i, ifail, il, info, iu, j, k, ldz, m, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: ap(:), work(:), z(:, :) Real (Kind=dp), Allocatable :: rwork(:), w(:) Integer, Allocatable :: iwork(:), jfail(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, conjg, maxloc ! .. Executable Statements .. Write (nout, *) 'ZHPEVX Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n ldz = n m = n Allocate (ap((n*(n+1))/2), work(2*n), z(ldz,m), rwork(7*n), w(n), iwork( & 5*n), jfail(n)) ! Read the lower and upper bounds of the interval to be searched, ! and read the upper or lower triangular part of the matrix A ! from data file Read (nin, *) vl, vu If (uplo=='U') Then Read (nin, *)((ap(i+(j*(j-1))/2),j=i,n), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ap(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) End If ! Set the absolute error tolerance for eigenvalues. With ABSTOL ! set to zero, the default value is used instead abstol = zero ! Solve the Hermitian eigenvalue problem Call zhpevx('Vectors', 'Values in range', uplo, n, ap, vl, vu, il, iu, & abstol, m, w, z, ldz, work, rwork, iwork, jfail, info) If (info>=0) Then ! Print solution Write (nout, 100) 'Number of eigenvalues found =', m Write (nout, *) Write (nout, *) 'Eigenvalues' Write (nout, 110) w(1:m) Flush (nout) ! Normalize the eigenvectors, largest element real Do i = 1, m rwork(1:n) = abs(z(1:n,i)) k = maxloc(rwork(1:n), 1) scal = conjg(z(k,i))/abs(z(k,i))/dznrm2(n, z(1,i), 1) z(1:n, i) = z(1:n, i)*scal End Do ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen('General', ' ', n, m, z, ldz, & 'Selected eigenvectors', ifail) If (info>0) Then Write (nout, 100) 'INFO eigenvectors failed to converge, INFO =', & info Write (nout, *) 'Indices of eigenvectors that did not converge' Write (nout, 120) jfail(1:m) End If Else Write (nout, 100) 'Failure in ZHPEVX. INFO =', info End If 100 Format (1X, A, I5) 110 Format (3X, (8F8.4)) 120 Format (3X, (8I8)) End Program