Program zhpev_example ! ZHPEV Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_interfaces, Only: zhpev Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Real (Kind=dp) :: eerrbd, eps Integer :: i, info, j, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: ap(:), work(:) Complex (Kind=dp) :: dummy(1, 1) Real (Kind=dp), Allocatable :: rwork(:), w(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, epsilon, max ! .. Executable Statements .. Write (nout, *) 'ZHPEV Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n Allocate (ap((n*(n+1))/2), work(2*n-1), rwork(3*n-2), w(n)) ! Read the upper or lower triangular part of the matrix A from ! data file If (uplo=='U') Then Read (nin, *)((ap(i+(j*(j-1))/2),j=i,n), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ap(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) End If ! Solve the Hermitian eigenvalue problem Call zhpev('No vectors', uplo, n, ap, w, dummy, 1, work, rwork, info) If (info==0) Then ! Print solution Write (nout, *) 'Eigenvalues' Write (nout, 100) w(1:n) ! Get the machine precision, EPS and compute the approximate ! error bound for the computed eigenvalues. Note that for ! the 2-norm, max( abs(W(i)) ) = norm(A), and since the ! eigenvalues are returned in ascending order ! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n))) eps = epsilon(1.0E0_dp) eerrbd = eps*max(abs(w(1)), abs(w(n))) ! Print the approximate error bound for the eigenvalues Write (nout, *) Write (nout, *) 'Error estimate for the eigenvalues' Write (nout, 110) eerrbd Else Write (nout, 120) 'Failure in ZHPEV. INFO =', info End If 100 Format (3X, (8F8.4)) 110 Format (4X, 1P, 6E11.1) 120 Format (1X, A, I4) End Program