Program zhbev_example ! ZHBEV Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use blas_interfaces, Only: dznrm2 Use lapack_example_aux, Only: nagf_file_print_matrix_complex_gen Use lapack_interfaces, Only: ddisna, zhbev Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Complex (Kind=dp) :: scal Real (Kind=dp) :: eerrbd, eps Integer :: i, ifail, info, j, k, kd, ldab, ldz, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: ab(:, :), work(:), z(:, :) Real (Kind=dp), Allocatable :: rcondz(:), rwork(:), w(:), zerrbd(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, conjg, epsilon, max, maxloc, min ! .. Executable Statements .. Write (nout, *) 'ZHBEV Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n, kd ldab = kd + 1 ldz = n Allocate (ab(ldab,n), work(n), z(ldz,n), rcondz(n), rwork(3*n-2), w(n), & zerrbd(n)) ! Read the upper or lower triangular part of the symmetric band ! matrix A from data file If (uplo=='U') Then Read (nin, *)((ab(kd+1+i-j,j),j=i,min(n,i+kd)), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ab(1+i-j,j),j=max(1,i-kd),i), i=1, n) End If ! Solve the band Hermitian eigenvalue problem Call zhbev('Vectors', uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, & info) If (info==0) Then ! Print solution Write (nout, *) 'Eigenvalues' Write (nout, 100) w(1:n) Flush (nout) ! Normalize the eigenvectors, largest element real Do i = 1, n rwork(1:n) = abs(z(1:n,i)) k = maxloc(rwork(1:n), 1) scal = conjg(z(k,i))/abs(z(k,i))/dznrm2(n, z(1,i), 1) z(1:n, i) = z(1:n, i)*scal End Do ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen('General', ' ', n, n, z, ldz, & 'Eigenvectors', ifail) ! Get the machine precision, EPS and compute the approximate ! error bound for the computed eigenvalues. Note that for ! the 2-norm, max( abs(W(i)) ) = norm(A), and since the ! eigenvalues are returned in ascending order ! max( abs(W(i)) ) = max( abs(W(1)), abs(W(n))) eps = epsilon(1.0E0_dp) eerrbd = eps*max(abs(w(1)), abs(w(n))) ! Call DDISNA to estimate reciprocal condition ! numbers for the eigenvectors Call ddisna('Eigenvectors', n, n, w, rcondz, info) ! Compute the error estimates for the eigenvectors Do i = 1, n zerrbd(i) = eerrbd/rcondz(i) End Do ! Print the approximate error bounds for the eigenvalues ! and vectors Write (nout, *) Write (nout, *) 'Error estimate for the eigenvalues' Write (nout, 110) eerrbd Write (nout, *) Write (nout, *) 'Error estimates for the eigenvectors' Write (nout, 110) zerrbd(1:n) Else Write (nout, 120) 'Failure in ZHBEV. INFO =', info End If 100 Format (3X, (8F8.4)) 110 Format (4X, 1P, 6E11.1) 120 Format (1X, A, I4) End Program