Program zggevx_example ! ZGGEVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_sort_realvec_rank_rearrange, & nagf_blas_dpyth, nagf_sort_cmplxvec_rank_rearrange, & nagf_sort_realvec_rank Use lapack_interfaces, Only: zggevx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nb = 64, nin = 5, nout = 6 Logical, Parameter :: verbose = .False. ! .. Local Scalars .. Complex (Kind=dp) :: eig, scal Real (Kind=dp) :: abnorm, abnrm, bbnrm, eps, small, tol Integer :: i, ifail, ihi, ilo, info, j, k, lda, ldb, ldvr, lwork, n ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), alpha(:), b(:, :), beta(:), & temp(:), vr(:, :), work(:) Complex (Kind=dp) :: dummy(1, 1) Real (Kind=dp), Allocatable :: lscale(:), rconde(:), rcondv(:), & rscale(:), rwork(:) Integer, Allocatable :: irank(:), iwork(:) Logical, Allocatable :: bwork(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, epsilon, max, maxloc, nint, real, tiny ! .. Executable Statements .. Write (nout, *) 'ZGGEVX Example Program Results' ! Skip heading in data file Read (nin, *) Read (nin, *) n lda = n ldb = n ldvr = n Allocate (a(lda,n), alpha(n), b(ldb,n), beta(n), vr(ldvr,n), lscale(n), & rconde(n), rcondv(n), rscale(n), rwork(6*n), iwork(n+2), bwork(n), & temp(n)) ! Use routine workspace query to get optimal workspace. lwork = -1 Call zggevx('Balance', 'No vectors (left)', 'Vectors (right)', & 'Both reciprocal condition numbers', n, a, lda, b, ldb, alpha, beta, & dummy, 1, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, & rcondv, dummy, lwork, rwork, iwork, bwork, info) ! Make sure that there is enough workspace for block size nb. lwork = max((nb+2*n)*n, nint(real(dummy(1,1)))) Allocate (work(lwork)) ! Read in the matrices A and B Read (nin, *)(a(i,1:n), i=1, n) Read (nin, *)(b(i,1:n), i=1, n) ! Solve the generalized eigenvalue problem Call zggevx('Balance', 'No vectors (left)', 'Vectors (right)', & 'Both reciprocal condition numbers', n, a, lda, b, ldb, alpha, beta, & dummy, 1, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, & rcondv, work, lwork, rwork, iwork, bwork, info) If (info>0) Then Write (nout, *) Write (nout, 100) 'Failure in ZGGEVX. INFO =', info Else ! Compute the machine precision, the safe range parameter ! SMALL and sqrt(ABNRM**2+BBNRM**2) eps = epsilon(1.0E0_dp) small = tiny(1.0E0_dp) abnorm = nagf_blas_dpyth(abnrm, bbnrm) tol = eps*abnorm ! Reorder eigenvalues by descending absolute value rwork(1:n) = abs(alpha(1:n)/beta(1:n)) Allocate (irank(n)) ifail = 0 Call nagf_sort_realvec_rank(rwork, 1, n, 'Descending', irank, ifail) Call nagf_sort_cmplxvec_rank_rearrange(alpha, 1, n, irank, ifail) Call nagf_sort_cmplxvec_rank_rearrange(beta, 1, n, irank, ifail) Call nagf_sort_realvec_rank_rearrange(rconde, 1, n, irank, ifail) ! Reorder eigenvectors accordingly Do j = 1, n temp(1:n) = vr(j, 1:n) Call nagf_sort_cmplxvec_rank_rearrange(temp, 1, n, irank, ifail) vr(j, 1:n) = temp(1:n) End Do Call nagf_sort_realvec_rank_rearrange(rcondv, 1, n, irank, ifail) ! Print out eigenvalues and vectors and associated condition ! number and bounds Write (nout, *) Write (nout, *) 'Eigenvalues' Write (nout, *) If (verbose) Then Write (nout, *) ' Eigenvalue rcond error' Else Write (nout, *) ' Eigenvalue' End If Do j = 1, n ! Print out information on the j-th eigenvalue If ((abs(alpha(j)))*small>=abs(beta(j))) Then If (rconde(j)>0.0_dp) Then If (tol/rconde(j)<500.0_dp*eps) Then Write (nout, 140) j, rconde(j), '-' Else Write (nout, 150) j, rconde(j), tol/rconde(j) End If Else Write (nout, 140) j, rconde(j), 'Inf' End If Else eig = alpha(j)/beta(j) If (verbose) Then If (rconde(j)>0.0_dp) Then If (tol/rconde(j)<500.0_dp*eps) Then Write (nout, 110) j, eig, rconde(j), '-' Else Write (nout, 120) j, eig, rconde(j), tol/rconde(j) End If Else Write (nout, 110) j, eig, rconde(j), 'Inf' End If Else Write (nout, 110) j, eig End If End If End Do Write (nout, *) Write (nout, *) 'Eigenvectors' Write (nout, *) If (verbose) Then Write (nout, *) ' Eigenvector rcond error' Else Write (nout, *) ' Eigenvector' End If Do j = 1, n ! Print information on j-th eigenvector Write (nout, *) ! Re-normalize eigenvector, largest absolute element real (=1) rwork(1:n) = abs(vr(1:n,j)) k = maxloc(rwork(1:n), 1) scal = (1.0_dp, 0.0_dp)/vr(k, j) vr(1:n, j) = vr(1:n, j)*scal If (verbose) Then If (rcondv(j)>0.0_dp) Then If (tol/rcondv(j)<500.0_dp*eps) Then Write (nout, 110) j, vr(1, j), rcondv(j), '-' Else Write (nout, 120) j, vr(1, j), rcondv(j), tol/rcondv(j) End If Else Write (nout, 110) j, vr(1, j), rcondv(j), 'Inf' End If Else Write (nout, 110) j, vr(1, j) End If Write (nout, 130) vr(2:n, j) End Do If (verbose) Then Write (nout, *) Write (nout, *) & 'Errors below 500*machine precision are not displayed' End If End If 100 Format (1X, A, I4) 110 Format (1X, I2, 1X, '(', 1P, E11.4, ',', E11.4, ')', 1X, 0P, F7.4, 4X, & A) 120 Format (1X, I2, 1X, '(', 1P, E11.4, ',', E11.4, ')', 1X, 0P, F7.4, 1X, & 1P, E8.1) 130 Format (1X, 3X, '(', 1P, E11.4, ',', E11.4, ')') 140 Format (1X, I2, 1X, ' Infinite or undetermined', 1X, 0P, F7.4, 4X, A) 150 Format (1X, I2, 1X, ' Infinite or undetermined', 1X, 0P, F7.4, 1X, 1P, & E8.1) End Program