! ZGGESX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com Module zggesx_mod ! ZGGESX Example Program Module: ! Parameters and User-defined Routines ! .. Use Statements .. Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Accessibility Statements .. Private Public :: selctg ! .. Parameters .. Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6 Logical, Parameter, Public :: chkfac = .False., prcond = .False., & prmat = .False. Contains Function selctg(a, b) ! Logical function selctg for use with ZGGESX (ZGGESX) ! Returns the value .TRUE. if the absolute value of the eigenvalue ! a/b < 6.0 ! .. Function Return Value .. Logical :: selctg ! .. Scalar Arguments .. Complex (Kind=dp), Intent (In) :: a, b ! .. Intrinsic Procedures .. Intrinsic :: abs ! .. Executable Statements .. selctg = (abs(a)<6.0_dp*abs(b)) Return End Function End Module Program zggesx_example ! ZGGESX Example Main Program ! .. Use Statements .. Use blas_interfaces, Only: zgemm Use zggesx_mod, Only: chkfac, nb, nin, nout, prcond, prmat, selctg Use lapack_example_aux, Only: nagf_sort_realvec_rank, nagf_blas_dpyth, & nagf_file_print_matrix_complex_gen_comp, & nagf_sort_cmplxvec_rank_rearrange Use lapack_interfaces, Only: zggesx, zlange Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Local Scalars .. Complex (Kind=dp) :: alph, bet Real (Kind=dp) :: abnorm, anorm, bnorm, eps, normd, norme, tol Integer :: i, ifail, info, lda, ldb, ldc, ldd, lde, ldvsl, ldvsr, & liwork, lwork, n, sdim Logical :: factor ! .. Local Arrays .. Complex (Kind=dp), Allocatable :: a(:, :), alpha(:), b(:, :), beta(:), & c(:, :), d(:, :), e(:, :), vsl(:, :), vsr(:, :), work(:) Complex (Kind=dp) :: dummy(1) Real (Kind=dp) :: rconde(2), rcondv(2) Real (Kind=dp), Allocatable :: rwork(:) Integer :: idum(1) Integer, Allocatable :: iwork(:) Logical, Allocatable :: bwork(:) Character (1) :: clabs(1), rlabs(1) ! .. Intrinsic Procedures .. Intrinsic :: abs, cmplx, epsilon, max, nint, real ! .. Executable Statements .. Write (nout, *) 'ZGGESX Example Program Results' Write (nout, *) Flush (nout) ! Skip heading in data file Read (nin, *) Read (nin, *) n lda = n ldb = n ldc = n ldd = n lde = n ldvsl = n ldvsr = n Allocate (a(lda,n), alpha(n), b(ldb,n), beta(n), c(ldc,n), d(ldd,n), & e(lde,n), vsl(ldvsl,n), vsr(ldvsr,n), rwork(8*n), bwork(n)) ! Use routine workspace query to get optimal workspace. lwork = -1 liwork = -1 Call zggesx('Vectors (left)', 'Vectors (right)', 'Sort', selctg, & 'Both reciprocal condition numbers', n, a, lda, b, ldb, sdim, alpha, & beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, dummy, lwork, rwork, & idum, liwork, bwork, info) ! Make sure that there is enough workspace for block size nb. lwork = max(n*nb+n*n/2, nint(real(dummy(1)))) liwork = max(n+2, idum(1)) Allocate (work(lwork), iwork(liwork)) ! Read in the matrices A and B Read (nin, *)(a(i,1:n), i=1, n) Read (nin, *)(b(i,1:n), i=1, n) If (chkfac) Then ! Copy A and B into D and E respectively d(1:n, 1:n) = a(1:n, 1:n) e(1:n, 1:n) = b(1:n, 1:n) End If ! Find the Frobenius norms of A and B anorm = zlange('Frobenius', n, n, a, lda, rwork) bnorm = zlange('Frobenius', n, n, b, ldb, rwork) If (prmat) Then ! Print matrices A and B ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, n, a, & lda, 'Bracketed', 'F8.4', 'Matrix A', 'Integer', rlabs, 'Integer', & clabs, 80, 0, ifail) Write (nout, *) Flush (nout) ifail = 0 Call nagf_file_print_matrix_complex_gen_comp('General', ' ', n, n, b, & ldb, 'Bracketed', 'F8.4', 'Matrix B', 'Integer', rlabs, 'Integer', & clabs, 80, 0, ifail) Write (nout, *) Flush (nout) End If factor = .True. ! Find the generalized Schur form Call zggesx('Vectors (left)', 'Vectors (right)', 'Sort', selctg, & 'Both reciprocal condition numbers', n, a, lda, b, ldb, sdim, alpha, & beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, rwork, & iwork, liwork, bwork, info) If (info/=0 .And. info/=(n+2)) Then Write (nout, 100) 'Failure in ZGGESX. INFO =', info factor = .False. Else If (chkfac) Then ! Compute A - Q*S*Z^H from the factorization of (A,B) and store in ! matrix D alph = cmplx(1, kind=dp) bet = cmplx(0, kind=dp) Call zgemm('N', 'N', n, n, n, alph, vsl, ldvsl, a, lda, bet, c, ldc) alph = cmplx(-1, kind=dp) bet = cmplx(1, kind=dp) Call zgemm('N', 'C', n, n, n, alph, c, ldc, vsr, ldvsr, bet, d, ldd) ! Compute B - Q*T*Z^H from the factorization of (A,B) and store in ! matrix E alph = cmplx(1, kind=dp) bet = cmplx(0, kind=dp) Call zgemm('N', 'N', n, n, n, alph, vsl, ldvsl, b, ldb, bet, c, ldc) alph = cmplx(-1, kind=dp) bet = cmplx(1, kind=dp) Call zgemm('N', 'C', n, n, n, alph, c, ldc, vsr, ldvsr, bet, e, lde) ! Find norms of matrices D and E and warn if either is too large normd = zlange('O', ldd, n, d, ldd, rwork) If (normd>epsilon(1.0E0_dp)**0.75_dp) Then Write (nout, *) 'Norm of A-(Q*S*Z^T) is much greater than 0.' factor = .False. Write (nout, *) 'Schur factorization has failed.' End If norme = zlange('O', lde, n, e, lde, rwork) If (norme>epsilon(1.0E0_dp)**0.75_dp) Then Write (nout, *) 'Norm of B-(Q*T*Z^T) is much greater than 0.' factor = .False. End If End If If (factor) Then ! Print eigenvalue details Write (nout, 100) 'Number of eigenvalues for which SELCTG is true = ', & sdim, '(dimension of deflating subspaces)' Write (nout, *) ! Print selected (finite) generalized eigenvalues Write (nout, *) 'Selected generalized eigenvalues' ! Store absolute values of eigenvalues for ranking work(1:n) = alpha(1:n)/beta(1:n) rwork(1:n) = abs(work(1:n)) ! Rank eigenvalues ifail = 0 Call nagf_sort_realvec_rank(rwork, 1, sdim, 'Descending', iwork, & ifail) ! Sort eigenvalues in work(1:n) Call nagf_sort_cmplxvec_rank_rearrange(work, 1, sdim, iwork, ifail) Do i = 1, sdim Write (nout, 110) i, work(i) End Do If (info==(n+2)) Then Write (nout, 120) '*** Note that rounding errors mean ', & 'that leading eigenvalues in the', & 'generalized Schur form no longer satisfy SELCTG = .TRUE.' Write (nout, *) End If Flush (nout) If (prcond) Then ! Compute the machine precision and sqrt(anorm**2+bnorm**2) eps = epsilon(1.0E0_dp) abnorm = nagf_blas_dpyth(anorm, bnorm) tol = eps*abnorm ! Print out the reciprocal condition numbers and error bound for ! selected eigenvalues Write (nout, *) Write (nout, 130) & 'Reciprocal condition numbers for the average of the', & 'selected eigenvalues and their asymptotic error bound', & 'rcond-left = ', rconde(1), ', rcond-right = ', rconde(2), & ', error = ', tol/rconde(1) Write (nout, *) Write (nout, 130) & 'Reciprocal condition numbers for the deflating subspaces', & 'and their approximate asymptotic error bound', 'rcond-left = ', & rcondv(1), ', rcond-right = ', rcondv(2), ', error = ', & tol/rcondv(2) End If Else Write (nout, *) 'Schur factorization has failed.' End If 100 Format (1X, A, I4, /, 1X, A) 110 Format (1X, I2, 1X, '(', F6.2, ',', F6.2, ')') 120 Format (1X, 2A, /, 1X, A) 130 Format (1X, A, /, 1X, A, /, 1X, 3(A,1P,E8.1)) End Program