!   DGGESX Example Program Text
!   Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com

    Module dggesx_mod

!     DGGESX Example Program Module:
!            Parameters and User-defined Routines

!     .. Use Statements ..
      Use lapack_precision, Only: dp
!     .. Implicit None Statement ..
      Implicit None
!     .. Accessibility Statements ..
      Private
      Public :: selctg
!     .. Parameters ..
      Integer, Parameter, Public :: nb = 64, nin = 5, nout = 6
    Contains
      Function selctg(ar, ai, b)

!       Logical function selctg for use with DGGESX (DGGESX)
!       Returns the value .TRUE. if the eigenvalue is real and positive

!       .. Function Return Value ..
        Logical :: selctg
!       .. Scalar Arguments ..
        Real (Kind=dp), Intent (In) :: ai, ar, b
!       .. Executable Statements ..
        selctg = (ar>0._dp .And. ai==0._dp .And. b/=0._dp)
        Return
      End Function
    End Module
    Program dggesx_example

!     DGGESX Example Main Program

!     .. Use Statements ..
      Use blas_interfaces, Only: dgemm
      Use dggesx_mod, Only: nb, nin, nout, selctg
      Use lapack_example_aux, Only: nagf_blas_dpyth, &
        nagf_file_print_matrix_real_gen
      Use lapack_interfaces, Only: dggesx, dlange
      Use lapack_precision, Only: dp
!     .. Implicit None Statement ..
      Implicit None
!     .. Local Scalars ..
      Real (Kind=dp) :: abnorm, alph, anorm, bet, bnorm, eps, normd, norme, &
        tol
      Integer :: i, ifail, info, lda, ldb, ldc, ldd, lde, ldvsl, ldvsr, &
        liwork, lwork, n, sdim
!     .. Local Arrays ..
      Real (Kind=dp), Allocatable :: a(:, :), alphai(:), alphar(:), b(:, :), &
        beta(:), c(:, :), d(:, :), e(:, :), vsl(:, :), vsr(:, :), work(:)
      Real (Kind=dp) :: rconde(2), rcondv(2), rdum(1)
      Integer :: idum(1)
      Integer, Allocatable :: iwork(:)
      Logical, Allocatable :: bwork(:)
!     .. Intrinsic Procedures ..
      Intrinsic :: epsilon, max, nint
!     .. Executable Statements ..
      Write (nout, *) 'DGGESX Example Program Results'
      Write (nout, *)
      Flush (nout)
!     Skip heading in data file
      Read (nin, *)
      Read (nin, *) n
      lda = n
      ldb = n
      ldc = n
      ldd = n
      lde = n
      ldvsl = n
      ldvsr = n
      Allocate (a(lda,n), alphai(n), alphar(n), b(ldb,n), beta(n), &
        vsl(ldvsl,n), vsr(ldvsr,n), bwork(n), c(ldc,n), d(ldd,n), e(lde,n))

!     Use routine workspace query to get optimal workspace.
      lwork = -1
      liwork = -1
      Call dggesx('Vectors (left)', 'Vectors (right)', 'Sort', selctg, &
        'Both reciprocal condition numbers', n, a, lda, b, ldb, sdim, alphar, &
        alphai, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, rdum, lwork, &
        idum, liwork, bwork, info)

!     Make sure that there is enough workspace for block size nb.
      lwork = max(8*(n+1)+16+n*nb+n*n/2, nint(rdum(1)))
      liwork = max(n+6, idum(1))
      Allocate (work(lwork), iwork(liwork))

!     Read in the matrices A and B
      Read (nin, *)(a(i,1:n), i=1, n)
      Read (nin, *)(b(i,1:n), i=1, n)

!     Copy A and B into D and E respectively
      d(1:n, 1:n) = a(1:n, 1:n)
      e(1:n, 1:n) = b(1:n, 1:n)

!     Print matrices A and B
!     ifail: behaviour on error exit
!            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
      ifail = 0
      Call nagf_file_print_matrix_real_gen('General', ' ', n, n, a, lda, &
        'Matrix A', ifail)
      Write (nout, *)
      Flush (nout)

      ifail = 0
      Call nagf_file_print_matrix_real_gen('General', ' ', n, n, b, ldb, &
        'Matrix B', ifail)
      Write (nout, *)
      Flush (nout)

!     Find the Frobenius norms of A and B
      anorm = dlange('Frobenius', n, n, a, lda, work)
      bnorm = dlange('Frobenius', n, n, b, ldb, work)

!     Find the generalized Schur form
      Call dggesx('Vectors (left)', 'Vectors (right)', 'Sort', selctg, &
        'Both reciprocal condition numbers', n, a, lda, b, ldb, sdim, alphar, &
        alphai, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, &
        iwork, liwork, bwork, info)

      If (info==0 .Or. info==(n+2)) Then

!       Compute A - Q*S*Z^T from the factorization of (A,B) and store in
!       matrix D
        alph = 1.0_dp
        bet = 0.0_dp
        Call dgemm('N', 'N', n, n, n, alph, vsl, ldvsl, a, lda, bet, c, ldc)
        alph = -1.0_dp
        bet = 1.0_dp
        Call dgemm('N', 'T', n, n, n, alph, c, ldc, vsr, ldvsr, bet, d, ldd)

!       Compute B - Q*T*Z^T from the factorization of (A,B) and store in
!       matrix E
        alph = 1.0_dp
        bet = 0.0_dp
        Call dgemm('N', 'N', n, n, n, alph, vsl, ldvsl, b, ldb, bet, c, ldc)
        alph = -1.0_dp
        bet = 1.0_dp
        Call dgemm('N', 'T', n, n, n, alph, c, ldc, vsr, ldvsr, bet, e, lde)

!       Find norms of matrices D and E and warn if either is too large
        normd = dlange('O', ldd, n, d, ldd, work)
        norme = dlange('O', lde, n, e, lde, work)
        If (normd>epsilon(1.0E0_dp)**0.8_dp .Or. norme>epsilon(1.0E0_dp)** &
          0.8_dp) Then
          Write (nout, *) 'Norm of A-(Q*S*Z^T) or norm of B-(Q*T*Z^T) &
            &is much greater than 0.'
          Write (nout, *) 'Schur factorization has failed.'
        Else

!         Print solution
          Write (nout, 100) &
            'Number of eigenvalues for which SELCTG is true = ', sdim, &
            '(dimension of deflating subspaces)'

          Write (nout, *)
!         Print generalized eigenvalues
          Write (nout, *) 'Selected generalized eigenvalues'

          Do i = 1, sdim
            If (beta(i)/=0.0_dp) Then
              Write (nout, 110) i, '(', alphar(i)/beta(i), ',', &
                alphai(i)/beta(i), ')'
            Else
              Write (nout, 120) i
            End If
          End Do

          If (info==(n+2)) Then
            Write (nout, 130) '***Note that rounding errors mean ', &
              'that leading eigenvalues in the generalized', &
              'Schur form no longer satisfy SELCTG = .TRUE.'
            Write (nout, *)
          End If
          Flush (nout)

!         Print out the reciprocal condition numbers
          Write (nout, *)
          Write (nout, 140) &
            'Reciprocals of left and right projection norms onto', &
            'the deflating subspaces for the selected eigenvalues', &
            'RCONDE(1) = ', rconde(1), ', RCONDE(2) = ', rconde(2)
          Write (nout, *)
          Write (nout, 140) &
            'Reciprocal condition numbers for the left and right', &
            'deflating subspaces', 'RCONDV(1) = ', rcondv(1), &
            ', RCONDV(2) = ', rcondv(2)
          Flush (nout)

!         Compute the machine precision and sqrt(anorm**2+bnorm**2)
          eps = epsilon(1.0E0_dp)
          abnorm = nagf_blas_dpyth(anorm, bnorm)
          tol = eps*abnorm

!         Print out the approximate asymptotic error bound on the
!         average absolute error of the selected eigenvalues given by
!         eps*norm((A, B))/PL,   where PL = RCONDE(1)
          Write (nout, *)
          Write (nout, 150) 'Approximate asymptotic error bound for selected ' &
            , 'eigenvalues    = ', tol/rconde(1)

!         Print out an approximate asymptotic bound on the maximum
!         angular error in the computed deflating subspaces given by
!         eps*norm((A, B))/DIF(2),   where DIF(2) = RCONDV(2)
          Write (nout, 150) &
            'Approximate asymptotic error bound for the deflating ', &
            'subspaces = ', tol/rcondv(2)

        End If

      Else
        Write (nout, 100) 'Failure in DGGESX. INFO =', info
      End If

100   Format (1X, A, I4, /, 1X, A)
110   Format (1X, I4, 5X, A, F7.3, A, F7.3, A)
120   Format (1X, I4, 'Eigenvalue is infinite')
130   Format (1X, 2A, /, 1X, A)
140   Format (1X, A, /, 1X, A, /, 1X, 2(A,1P,E8.1))
150   Format (1X, 2A, 1P, E8.1)
    End Program