概要
本サンプルはFortran言語によりLAPACKルーチンDSYGVXを利用するサンプルプログラムです。
一般化対称固有値問題
![$ (-1.0, 1.0]$](img/img97.gif)

DSYGVDの例題プログラムは一般化対称固有値問題

入力データ
(本ルーチンの詳細はDSYGVX のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
このデータをダウンロード |
DSYGVX Example Program Data 4 :Value of N -1.0 1.0 :Values of VL and VU 0.24 0.39 0.42 -0.16 -0.11 0.79 0.63 -0.25 0.48 -0.03 :End of matrix A 4.16 -3.12 0.56 -0.10 5.03 -0.83 1.09 0.76 0.34 1.18 :End of matrix B
出力結果
(本ルーチンの詳細はDSYGVX のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12
この出力例をダウンロード |
DSYGVX Example Program Results Number of eigenvalues found = 2 Eigenvalues -0.4548 0.1001 Selected eigenvectors 1 2 1 -0.3080 -0.4469 2 -0.5329 -0.0371 3 0.3496 0.0505 4 0.6211 0.4743
ソースコード
(本ルーチンの詳細はDSYGVX のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
このソースコードをダウンロード |
Program dsygvx_example ! DSYGVX Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_blas_damax_val, & nagf_file_print_matrix_real_gen Use lapack_interfaces, Only: dsygvx Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Real (Kind=dp), Parameter :: zero = 0.0_dp Integer, Parameter :: nb = 64, nin = 5, nout = 6 ! .. Local Scalars .. Real (Kind=dp) :: abstol, r, vl, vu Integer :: i, ifail, il, info, iu, k, lda, ldb, ldz, lwork, m, n ! .. Local Arrays .. Real (Kind=dp), Allocatable :: a(:, :), b(:, :), w(:), work(:), z(:, :) Real (Kind=dp) :: dummy(1) Integer, Allocatable :: iwork(:), jfail(:) ! .. Intrinsic Procedures .. Intrinsic :: max, nint ! .. Executable Statements .. Write (nout, *) 'DSYGVX Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n lda = n ldb = n ldz = n m = n Allocate (a(lda,n), b(ldb,n), w(n), z(ldz,m), iwork(5*n), jfail(n)) ! Read the lower and upper bounds of the interval to be searched. Read (nin, *) vl, vu ! Use routine workspace query to get optimal workspace. lwork = -1 Call dsygvx(1, 'Vectors', 'Values in range', 'Upper', n, a, lda, b, ldb, & vl, vu, il, iu, abstol, m, w, z, ldz, dummy, lwork, iwork, jfail, & info) ! Make sure that there is enough workspace for block size nb. lwork = max((nb+3)*n, nint(dummy(1))) Allocate (work(lwork)) ! Read the upper triangular parts of the matrices A and B Read (nin, *)(a(i,i:n), i=1, n) Read (nin, *)(b(i,i:n), i=1, n) ! Set the absolute error tolerance for eigenvalues. With ABSTOL ! set to zero, the default value is used instead abstol = zero ! Solve the generalized symmetric eigenvalue problem ! A*x = lambda*B*x (ITYPE = 1) Call dsygvx(1, 'Vectors', 'Values in range', 'Upper', n, a, lda, b, ldb, & vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork, jfail, info) If (info>=0 .And. info<=n) Then ! Print solution Write (nout, 100) 'Number of eigenvalues found =', m Write (nout, *) Write (nout, *) 'Eigenvalues' Write (nout, 110) w(1:m) Flush (nout) ! Normalize the eigenvectors, largest positive Do i = 1, m Call nagf_blas_damax_val(n, z(1,i), 1, k, r) If (z(k,i)<zero) Then z(1:n, i) = -z(1:n, i) End If End Do ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call nagf_file_print_matrix_real_gen('General', ' ', n, m, z, ldz, & 'Selected eigenvectors', ifail) If (info>0) Then Write (nout, 100) 'INFO eigenvectors failed to converge, INFO =', & info Write (nout, *) 'Indices of eigenvectors that did not converge' Write (nout, 120) jfail(1:m) End If Else If (info>n .And. info<=2*n) Then i = info - n Write (nout, 130) 'The leading minor of order ', i, & ' of B is not positive definite' Else Write (nout, 100) 'Failure in DSYGVX. INFO =', info End If 100 Format (1X, A, I5) 110 Format (3X, (8F8.4)) 120 Format (3X, (8I8)) 130 Format (1X, A, I4, A) End Program