概要
本サンプルはFortran言語によりLAPACKルーチンDSYGVDを利用するサンプルプログラムです。
一般化対称固有値問題
DSYGVの例題は一般化対称固有値問題
の解き方を示します。
入力データ
(本ルーチンの詳細はDSYGVD のマニュアルページを参照)| このデータをダウンロード |
DSYGVD Example Program Data
4 :Value of N
0.24 0.39 0.42 -0.16
-0.11 0.79 0.63
-0.25 0.48
-0.03 :End of matrix A
4.16 -3.12 0.56 -0.10
5.03 -0.83 1.09
0.76 0.34
1.18 :End of matrix B
出力結果
(本ルーチンの詳細はDSYGVD のマニュアルページを参照)| この出力例をダウンロード |
DSYGVD Example Program Results
Eigenvalues
-3.5411 -0.3347 0.2983 2.2544
Eigenvectors
1 2 3 4
1 -0.0356 -0.1039 -0.7459 0.1909
2 0.3809 0.4322 -0.7845 0.3540
3 -0.2943 1.5644 -0.7144 0.5665
4 -0.3186 -1.0647 1.1184 0.3859
Estimate of reciprocal condition number for B
5.8E-03
Error estimates for the eigenvalues
1.4E-13 1.7E-14 1.6E-14 9.1E-14
Error estimates for the eigenvectors
5.6E-14 1.3E-13 1.3E-13 6.8E-14
ソースコード
(本ルーチンの詳細はDSYGVD のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
| このソースコードをダウンロード |
Program dsygvd_example
! DSYGVD Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use lapack_example_aux, Only: nagf_blas_damax_val, &
nagf_file_print_matrix_real_gen
Use lapack_interfaces, Only: ddisna, dlansy, dsygvd, dtrcon
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=dp), Parameter :: one = 1.0E+0_dp
Real (Kind=dp), Parameter :: zero = 0.0_dp
Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=dp) :: anorm, bnorm, eps, r, rcond, rcondb, t1, t2, t3
Integer :: i, ifail, info, k, lda, ldb, liwork, lwork, n
! .. Local Arrays ..
Real (Kind=dp), Allocatable :: a(:, :), b(:, :), eerbnd(:), rcondz(:), &
w(:), work(:), zerbnd(:)
Real (Kind=dp) :: dummy(1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, epsilon, max, nint
! .. Executable Statements ..
Write (nout, *) 'DSYGVD Example Program Results'
Write (nout, *)
! Skip heading in data file
Read (nin, *)
Read (nin, *) n
lda = n
ldb = n
Allocate (a(lda,n), b(ldb,n), eerbnd(n), rcondz(n), w(n), zerbnd(n))
! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1
Call dsygvd(2, 'Vectors', 'Upper', n, a, lda, b, ldb, w, dummy, lwork, &
idum, liwork, info)
! Make sure that there is enough workspace for block size nb.
lwork = max(1+(nb+6+2*n)*n, nint(dummy(1)))
liwork = max(3+5*n, idum(1))
Allocate (work(lwork), iwork(liwork))
! Read the upper triangular parts of the matrices A and B
Read (nin, *)(a(i,i:n), i=1, n)
Read (nin, *)(b(i,i:n), i=1, n)
! Compute the one-norms of the symmetric matrices A and B
anorm = dlansy('One norm', 'Upper', n, a, lda, work)
bnorm = dlansy('One norm', 'Upper', n, b, ldb, work)
! Solve the generalized symmetric eigenvalue problem
! A*B*x = lambda*x (ITYPE = 2)
Call dsygvd(2, 'Vectors', 'Upper', n, a, lda, b, ldb, w, work, lwork, &
iwork, liwork, info)
If (info==0) Then
! Print solution
Write (nout, *) 'Eigenvalues'
Write (nout, 100) w(1:n)
Flush (nout)
! Normalize the eigenvectors, largest positive
Do i = 1, n
Call nagf_blas_damax_val(n, a(1,i), 1, k, r)
If (a(k,i)<zero) Then
a(1:n, i) = -a(1:n, i)
End If
End Do
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call nagf_file_print_matrix_real_gen('General', ' ', n, n, a, lda, &
'Eigenvectors', ifail)
! Call DTRCON to estimate the reciprocal condition
! number of the Cholesky factor of B. Note that:
! cond(B) = 1/RCOND**2
Call dtrcon('One norm', 'Upper', 'Non-unit', n, b, ldb, rcond, work, &
iwork, info)
! Print the reciprocal condition number of B
rcondb = rcond**2
Write (nout, *)
Write (nout, *) 'Estimate of reciprocal condition number for B'
Write (nout, 110) rcondb
Flush (nout)
! Get the machine precision, EPS, and if RCONDB is not less
! than EPS**2, compute error estimates for the eigenvalues and
! eigenvectors
eps = epsilon(1.0E0_dp)
If (rcond>=eps) Then
! Call DDISNA to estimate reciprocal condition
! numbers for the eigenvectors of (A*B - lambda*I)
Call ddisna('Eigenvectors', n, n, w, rcondz, info)
! Compute the error estimates for the eigenvalues and
! eigenvectors
t1 = one/rcond
t2 = eps*t1
t3 = anorm*bnorm
Do i = 1, n
eerbnd(i) = eps*(t3+abs(w(i))/rcondb)
zerbnd(i) = t2*(t3/rcondz(i)+t1)
End Do
! Print the approximate error bounds for the eigenvalues
! and vectors
Write (nout, *)
Write (nout, *) 'Error estimates for the eigenvalues'
Write (nout, 110) eerbnd(1:n)
Write (nout, *)
Write (nout, *) 'Error estimates for the eigenvectors'
Write (nout, 110) zerbnd(1:n)
Else
Write (nout, *)
Write (nout, *) 'B is very ill-conditioned, error ', &
'estimates have not been computed'
End If
Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout, 120) 'The leading minor of order ', i, &
' of B is not positive definite'
Else
Write (nout, 130) 'Failure in DSYGVD. INFO =', info
End If
100 Format (3X, (6F11.4))
110 Format (4X, 1P, 6E11.1)
120 Format (1X, A, I4, A)
130 Format (1X, A, I4)
End Program
