概要
本サンプルはFortran言語によりLAPACKルーチンDSPGVDを利用するサンプルプログラムです。
一般化対称固有値問題
DSPGVの例題プログラムは一般化対称固有値問題
の解き方を示します。
入力データ
(本ルーチンの詳細はDSPGVD のマニュアルページを参照)| このデータをダウンロード |
DSPGVD Example Program Data
4 :Value of N
0.24 0.39 0.42 -0.16
-0.11 0.79 0.63
-0.25 0.48
-0.03 :End of matrix A
4.16 -3.12 0.56 -0.10
5.03 -0.83 1.09
0.76 0.34
1.18 :End of matrix B
出力結果
(本ルーチンの詳細はDSPGVD のマニュアルページを参照)| この出力例をダウンロード |
DSPGVD Example Program Results
Eigenvalues
-3.5411 -0.3347 0.2983 2.2544
Estimate of reciprocal condition number for B
5.8E-03
Error estimates for the eigenvalues
1.4E-13 1.7E-14 1.6E-14 9.1E-14
ソースコード
(本ルーチンの詳細はDSPGVD のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
| このソースコードをダウンロード |
Program dspgvd_example
! DSPGVD Example Program Text
! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com
! .. Use Statements ..
Use lapack_interfaces, Only: dlansp, dspgvd, dtpcon
Use lapack_precision, Only: dp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = 'U'
! .. Local Scalars ..
Real (Kind=dp) :: anorm, bnorm, eps, rcond, rcondb, t1
Integer :: aplen, i, info, j, liwork, lwork, n
! .. Local Arrays ..
Real (Kind=dp), Allocatable :: ap(:), bp(:), eerbnd(:), w(:), work(:)
Real (Kind=dp) :: dummy(1, 1)
Integer :: idum(1)
Integer, Allocatable :: iwork(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, epsilon, max, nint
! .. Executable Statements ..
Write (nout, *) 'DSPGVD Example Program Results'
Write (nout, *)
! Skip heading in data file
Read (nin, *)
Read (nin, *) n
aplen = (n*(n+1))/2
Allocate (ap(aplen), bp(aplen), eerbnd(n), w(n))
! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1
Call dspgvd(2, 'No vectors', uplo, n, ap, bp, w, dummy, n, dummy, lwork, &
idum, liwork, info)
! Make sure that there is at least minimum workspace.
lwork = max(3*n, nint(dummy(1,1)))
liwork = max(n, idum(1))
Allocate (work(lwork), iwork(liwork))
! Read the upper or lower triangular parts of the matrices A and
! B from data file
If (uplo=='U') Then
Read (nin, *)((ap(i+(j*(j-1))/2),j=i,n), i=1, n)
Read (nin, *)((bp(i+(j*(j-1))/2),j=i,n), i=1, n)
Else If (uplo=='L') Then
Read (nin, *)((ap(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n)
Read (nin, *)((bp(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n)
End If
! Compute the one-norms of the symmetric matrices A and B
anorm = dlansp('One norm', uplo, n, ap, work)
bnorm = dlansp('One norm', uplo, n, bp, work)
! Solve the generalized symmetric eigenvalue problem
! A*B*x = lambda*x (itype = 2)
! In the following call the 9th argument is set to n rather
! than 1 to avoid an incorrect error message in some vendor
! versions of LAPACK.
Call dspgvd(2, 'No vectors', uplo, n, ap, bp, w, dummy, n, work, lwork, &
iwork, liwork, info)
If (info==0) Then
! Print solution
Write (nout, *) 'Eigenvalues'
Write (nout, 100) w(1:n)
! Call DTPCON to estimate the reciprocal condition
! number of the Cholesky factor of B. Note that:
! cond(B) = 1/rcond**2. DTPCON requires WORK and IWORK to be
! of length at least 3*n and n respectively
Call dtpcon('One norm', uplo, 'Non-unit', n, bp, rcond, work, iwork, &
info)
! Print the reciprocal condition number of B
rcondb = rcond**2
Write (nout, *)
Write (nout, *) 'Estimate of reciprocal condition number for B'
Write (nout, 110) rcondb
! Get the machine precision, eps, and if rcondb is not less
! than eps**2, compute error estimates for the eigenvalues
eps = epsilon(1.0E0_dp)
If (rcond>=eps) Then
t1 = anorm*bnorm
Do i = 1, n
eerbnd(i) = eps*(t1+abs(w(i))/rcondb)
End Do
! Print the approximate error bounds for the eigenvalues
Write (nout, *)
Write (nout, *) 'Error estimates for the eigenvalues'
Write (nout, 110) eerbnd(1:n)
Else
Write (nout, *)
Write (nout, *) 'B is very ill-conditioned, error ', &
'estimates have not been computed'
End If
Else If (info>n .And. info<=2*n) Then
i = info - n
Write (nout, 120) 'The leading minor of order ', i, &
' of B is not positive definite'
Else
Write (nout, 130) 'Failure in DSPGVD. INFO =', info
End If
100 Format (3X, (6F11.4))
110 Format (4X, 1P, 6E11.1)
120 Format (1X, A, I4, A)
130 Format (1X, A, I4)
End Program
