概要
本サンプルはFortran言語によりLAPACKルーチンDSPGVDを利用するサンプルプログラムです。
一般化対称固有値問題


DSPGVの例題プログラムは一般化対称固有値問題の解き方を示します。
入力データ
(本ルーチンの詳細はDSPGVD のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13
このデータをダウンロード |
DSPGVD Example Program Data 4 :Value of N 0.24 0.39 0.42 -0.16 -0.11 0.79 0.63 -0.25 0.48 -0.03 :End of matrix A 4.16 -3.12 0.56 -0.10 5.03 -0.83 1.09 0.76 0.34 1.18 :End of matrix B
出力結果
(本ルーチンの詳細はDSPGVD のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10
この出力例をダウンロード |
DSPGVD Example Program Results Eigenvalues -3.5411 -0.3347 0.2983 2.2544 Estimate of reciprocal condition number for B 5.8E-03 Error estimates for the eigenvalues 1.4E-13 1.7E-14 1.6E-14 9.1E-14
ソースコード
(本ルーチンの詳細はDSPGVD のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
このソースコードをダウンロード |
Program dspgvd_example ! DSPGVD Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_interfaces, Only: dlansp, dspgvd, dtpcon Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 Character (1), Parameter :: uplo = 'U' ! .. Local Scalars .. Real (Kind=dp) :: anorm, bnorm, eps, rcond, rcondb, t1 Integer :: aplen, i, info, j, liwork, lwork, n ! .. Local Arrays .. Real (Kind=dp), Allocatable :: ap(:), bp(:), eerbnd(:), w(:), work(:) Real (Kind=dp) :: dummy(1, 1) Integer :: idum(1) Integer, Allocatable :: iwork(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, epsilon, max, nint ! .. Executable Statements .. Write (nout, *) 'DSPGVD Example Program Results' Write (nout, *) ! Skip heading in data file Read (nin, *) Read (nin, *) n aplen = (n*(n+1))/2 Allocate (ap(aplen), bp(aplen), eerbnd(n), w(n)) ! Use routine workspace query to get optimal workspace. lwork = -1 liwork = -1 Call dspgvd(2, 'No vectors', uplo, n, ap, bp, w, dummy, n, dummy, lwork, & idum, liwork, info) ! Make sure that there is at least minimum workspace. lwork = max(3*n, nint(dummy(1,1))) liwork = max(n, idum(1)) Allocate (work(lwork), iwork(liwork)) ! Read the upper or lower triangular parts of the matrices A and ! B from data file If (uplo=='U') Then Read (nin, *)((ap(i+(j*(j-1))/2),j=i,n), i=1, n) Read (nin, *)((bp(i+(j*(j-1))/2),j=i,n), i=1, n) Else If (uplo=='L') Then Read (nin, *)((ap(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) Read (nin, *)((bp(i+((2*n-j)*(j-1))/2),j=1,i), i=1, n) End If ! Compute the one-norms of the symmetric matrices A and B anorm = dlansp('One norm', uplo, n, ap, work) bnorm = dlansp('One norm', uplo, n, bp, work) ! Solve the generalized symmetric eigenvalue problem ! A*B*x = lambda*x (itype = 2) ! In the following call the 9th argument is set to n rather ! than 1 to avoid an incorrect error message in some vendor ! versions of LAPACK. Call dspgvd(2, 'No vectors', uplo, n, ap, bp, w, dummy, n, work, lwork, & iwork, liwork, info) If (info==0) Then ! Print solution Write (nout, *) 'Eigenvalues' Write (nout, 100) w(1:n) ! Call DTPCON to estimate the reciprocal condition ! number of the Cholesky factor of B. Note that: ! cond(B) = 1/rcond**2. DTPCON requires WORK and IWORK to be ! of length at least 3*n and n respectively Call dtpcon('One norm', uplo, 'Non-unit', n, bp, rcond, work, iwork, & info) ! Print the reciprocal condition number of B rcondb = rcond**2 Write (nout, *) Write (nout, *) 'Estimate of reciprocal condition number for B' Write (nout, 110) rcondb ! Get the machine precision, eps, and if rcondb is not less ! than eps**2, compute error estimates for the eigenvalues eps = epsilon(1.0E0_dp) If (rcond>=eps) Then t1 = anorm*bnorm Do i = 1, n eerbnd(i) = eps*(t1+abs(w(i))/rcondb) End Do ! Print the approximate error bounds for the eigenvalues Write (nout, *) Write (nout, *) 'Error estimates for the eigenvalues' Write (nout, 110) eerbnd(1:n) Else Write (nout, *) Write (nout, *) 'B is very ill-conditioned, error ', & 'estimates have not been computed' End If Else If (info>n .And. info<=2*n) Then i = info - n Write (nout, 120) 'The leading minor of order ', i, & ' of B is not positive definite' Else Write (nout, 130) 'Failure in DSPGVD. INFO =', info End If 100 Format (3X, (6F11.4)) 110 Format (4X, 1P, 6E11.1) 120 Format (1X, A, I4, A) 130 Format (1X, A, I4) End Program