概要
本サンプルはFortran言語によりLAPACKルーチンDGGEVを利用するサンプルプログラムです。
行列対

入力データ
(本ルーチンの詳細はDGGEV のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10
このデータをダウンロード |
DGGEV Example Program Data 4 :Value of N 3.9 12.5 -34.5 -0.5 4.3 21.5 -47.5 7.5 4.3 21.5 -43.5 3.5 4.4 26.0 -46.0 6.0 :End of matrix A 1.0 2.0 -3.0 1.0 1.0 3.0 -5.0 4.0 1.0 3.0 -4.0 3.0 1.0 3.0 -4.0 4.0 :End of matrix B
出力結果
(本ルーチンの詳細はDGGEV のマニュアルページを参照)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
この出力例をダウンロード |
Warning: Floating underflow occurred DGGEV Example Program Results Eigenvalue( 1) = 20.000 Eigenvector( 1) 10.00000 0.05714 0.62857 0.62857 Eigenvalue( 2) = ( 30.000, -40.000) Eigenvector( 2) ( 7.12215, 0.00000) ( 1.42443, -0.00000) ( 0.85466, 1.13954) ( 0.85466, 1.13954) Eigenvalue( 3) = ( 30.000, 40.000) Eigenvector( 3) ( 7.12215, -0.00000) ( 1.42443, 0.00000) ( 0.85466, -1.13954) ( 0.85466, -1.13954) Eigenvalue( 4) = 40.000 Eigenvector( 4) 10.00000 0.11111 -0.33333 1.55556
ソースコード
(本ルーチンの詳細はDGGEV のマニュアルページを参照)※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
このソースコードをダウンロード |
Program dggev_example ! DGGEV Example Program Text ! Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com ! .. Use Statements .. Use lapack_example_aux, Only: nagf_sort_realmat_rank_rows, & nagf_sort_realvec_rank_rearrange Use lapack_interfaces, Only: dggev Use lapack_precision, Only: dp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Real (Kind=dp), Parameter :: zero = 0.0_dp Integer, Parameter :: nb = 64, nin = 5, nout = 6 ! .. Local Scalars .. Complex (Kind=dp) :: eig Real (Kind=dp) :: scal_i, scal_r, small Integer :: i, ifail, info, j, k, lda, ldb, ldvr, lwork, n Logical :: pair ! .. Local Arrays .. Real (Kind=dp), Allocatable :: a(:, :), alphai(:), alphar(:), b(:, :), & beta(:), vr(:, :), vr_row(:), work(:) Real (Kind=dp) :: dummy(1, 1) Integer, Allocatable :: irank(:) ! .. Intrinsic Procedures .. Intrinsic :: abs, all, cmplx, epsilon, max, maxloc, nint, sqrt, tiny ! .. Executable Statements .. Write (nout, *) 'DGGEV Example Program Results' ! Skip heading in data file Read (nin, *) Read (nin, *) n lda = n ldb = n ldvr = n Allocate (a(lda,n), alphai(n), alphar(n), b(ldb,n), beta(n), vr(ldvr,n), & irank(n)) ! Use routine workspace query to get optimal workspace. lwork = -1 Call dggev('No left vectors', 'Vectors (right)', n, a, lda, b, ldb, & alphar, alphai, beta, dummy, 1, vr, ldvr, dummy, lwork, info) ! Make sure that there is enough workspace for block size nb. lwork = max((nb+7)*n, nint(dummy(1,1))) Allocate (work(lwork)) ! Read in the matrices A and B Read (nin, *)(a(i,1:n), i=1, n) Read (nin, *)(b(i,1:n), i=1, n) ! Solve the generalized eigenvalue problem Call dggev('No left vectors', 'Vectors (right)', n, a, lda, b, ldb, & alphar, alphai, beta, dummy, 1, vr, ldvr, work, lwork, info) If (info>0) Then Write (nout, *) Write (nout, 100) 'Failure in DGGEV. INFO =', info Else ! If beta(:) > eps, Order eigenvalues by ascending real parts ! and then by ascending imaginary parts If (all(abs(beta(1:n))>epsilon(1.0E0_dp))) Then work(1:n) = alphar(1:n)/beta(1:n) work(n+1:2*n) = alphai(1:n)/beta(1:n) ifail = 0 Call nagf_sort_realmat_rank_rows(work, n, 1, n, 1, 2, 'Ascending', & irank, ifail) Call nagf_sort_realvec_rank_rearrange(alphar, 1, n, irank, ifail) Call nagf_sort_realvec_rank_rearrange(alphai, 1, n, irank, ifail) Call nagf_sort_realvec_rank_rearrange(beta, 1, n, irank, ifail) ! Order the eigenvectors in the same way Allocate (vr_row(n)) Do j = 1, n vr_row(1:n) = vr(j, 1:n) Call nagf_sort_realvec_rank_rearrange(vr_row, 1, n, irank, ifail) vr(j, 1:n) = vr_row(1:n) End Do Deallocate (vr_row) End If small = tiny(1.0E0_dp) pair = .False. Do j = 1, n Write (nout, *) If ((abs(alphar(j))+abs(alphai(j)))*small>=abs(beta(j))) Then Write (nout, 110) 'Eigenvalue(', j, ')', & ' is numerically infinite or undetermined', 'ALPHAR(', j, & ') = ', alphar(j), ', ALPHAI(', j, ') = ', alphai(j), ', BETA(', & j, ') = ', beta(j) Else If (alphai(j)==zero) Then Write (nout, 120) 'Eigenvalue(', j, ') = ', alphar(j)/beta(j) Else eig = cmplx(alphar(j), alphai(j), kind=dp)/ & cmplx(beta(j), kind=dp) Write (nout, 130) 'Eigenvalue(', j, ') = ', eig End If End If Write (nout, *) Write (nout, 140) 'Eigenvector(', j, ')' If (alphai(j)==zero) Then ! Let largest element be positive work(1:n) = abs(vr(1:n,j)) k = maxloc(work(1:n), 1) If (vr(k,j)<zero) Then vr(1:n, j) = -vr(1:n, j) End If Write (nout, 150)(vr(i,j), i=1, n) Else If (pair) Then Write (nout, 160)(vr(i,j-1), -vr(i,j), i=1, n) Else ! Let largest element be real (and positive). work(1:n) = vr(1:n, j)**2 + vr(1:n, j+1)**2 k = maxloc(work(1:n), 1) scal_r = vr(k, j)/sqrt(work(k)) scal_i = -vr(k, j+1)/sqrt(work(k)) work(1:n) = vr(1:n, j) vr(1:n, j) = scal_r*work(1:n) - scal_i*vr(1:n, j+1) vr(1:n, j+1) = scal_r*vr(1:n, j+1) + scal_i*work(1:n) Write (nout, 160)(vr(i,j), vr(i,j+1), i=1, n) End If pair = .Not. pair End If End Do End If 100 Format (1X, A, I4) 110 Format (1X, A, I2, 2A, /, 1X, 2(A,I2,A,1P,F11.3,3X), A, I2, A, 1P, & F11.3) 120 Format (1X, A, I2, A, 1P, F11.3) 130 Format (1X, A, I2, A, '(', 1P, F11.3, ',', 1P, F11.3, ')') 140 Format (1X, A, I2, A) 150 Format (1X, 1P, F11.5) 160 Format (1X, '(', 1P, F11.5, ',', 1P, F11.5, ')') End Program