実一般化非対称固有値問題: 実非対称行列ペアの一般化固有値 : (オプションで左/右一般化固有ベクトル)

LAPACKサンプルソースコード : 使用ルーチン名:DGGEV

概要

本サンプルはFortran言語によりLAPACKルーチンDGGEVを利用するサンプルプログラムです。

行列対 $ (A,B)$の全ての固有値と右固有ベクトルを求めます。

\begin{displaymath}
A = \left(
\begin{array}{rrrr}
3.9 & 12.5 & -34.5 & -0.5 ...
...& -4.0 & 3.0 \\
1.0 & 3.0 & -4.0 & 4.0
\end{array} \right).
\end{displaymath}

入力データ

(本ルーチンの詳細はDGGEV のマニュアルページを参照)
1
2
3
4
5
6
7
8
9
10

このデータをダウンロード
DGGEV Example Program Data
   4                     :Value of N
   3.9  12.5 -34.5  -0.5
   4.3  21.5 -47.5   7.5
   4.3  21.5 -43.5   3.5
   4.4  26.0 -46.0   6.0 :End of matrix A
   1.0   2.0  -3.0   1.0
   1.0   3.0  -5.0   4.0
   1.0   3.0  -4.0   3.0
   1.0   3.0  -4.0   4.0 :End of matrix B

出力結果

(本ルーチンの詳細はDGGEV のマニュアルページを参照)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

この出力例をダウンロード
Warning: Floating underflow occurred
 DGGEV Example Program Results

 Eigenvalue( 1) =      20.000

 Eigenvector( 1)
    10.00000
     0.05714
     0.62857
     0.62857

 Eigenvalue( 2) = (     30.000,    -40.000)

 Eigenvector( 2)
 (    7.12215,    0.00000)
 (    1.42443,   -0.00000)
 (    0.85466,    1.13954)
 (    0.85466,    1.13954)

 Eigenvalue( 3) = (     30.000,     40.000)

 Eigenvector( 3)
 (    7.12215,   -0.00000)
 (    1.42443,    0.00000)
 (    0.85466,   -1.13954)
 (    0.85466,   -1.13954)

 Eigenvalue( 4) =      40.000

 Eigenvector( 4)
    10.00000
     0.11111
    -0.33333
     1.55556

ソースコード

(本ルーチンの詳細はDGGEV のマニュアルページを参照)

※本サンプルソースコードのご利用手順は「サンプルのコンパイル及び実行方法」をご参照下さい。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

このソースコードをダウンロード
    Program dggev_example

!     DGGEV Example Program Text

!     Copyright 2017, Numerical Algorithms Group Ltd. http://www.nag.com

!     .. Use Statements ..
      Use lapack_example_aux, Only: nagf_sort_realmat_rank_rows, &
        nagf_sort_realvec_rank_rearrange
      Use lapack_interfaces, Only: dggev
      Use lapack_precision, Only: dp
!     .. Implicit None Statement ..
      Implicit None
!     .. Parameters ..
      Real (Kind=dp), Parameter :: zero = 0.0_dp
      Integer, Parameter :: nb = 64, nin = 5, nout = 6
!     .. Local Scalars ..
      Complex (Kind=dp) :: eig
      Real (Kind=dp) :: scal_i, scal_r, small
      Integer :: i, ifail, info, j, k, lda, ldb, ldvr, lwork, n
      Logical :: pair
!     .. Local Arrays ..
      Real (Kind=dp), Allocatable :: a(:, :), alphai(:), alphar(:), b(:, :), &
        beta(:), vr(:, :), vr_row(:), work(:)
      Real (Kind=dp) :: dummy(1, 1)
      Integer, Allocatable :: irank(:)
!     .. Intrinsic Procedures ..
      Intrinsic :: abs, all, cmplx, epsilon, max, maxloc, nint, sqrt, tiny
!     .. Executable Statements ..
      Write (nout, *) 'DGGEV Example Program Results'
!     Skip heading in data file
      Read (nin, *)
      Read (nin, *) n
      lda = n
      ldb = n
      ldvr = n
      Allocate (a(lda,n), alphai(n), alphar(n), b(ldb,n), beta(n), vr(ldvr,n), &
        irank(n))

!     Use routine workspace query to get optimal workspace.
      lwork = -1
      Call dggev('No left vectors', 'Vectors (right)', n, a, lda, b, ldb, &
        alphar, alphai, beta, dummy, 1, vr, ldvr, dummy, lwork, info)

!     Make sure that there is enough workspace for block size nb.
      lwork = max((nb+7)*n, nint(dummy(1,1)))
      Allocate (work(lwork))

!     Read in the matrices A and B

      Read (nin, *)(a(i,1:n), i=1, n)
      Read (nin, *)(b(i,1:n), i=1, n)

!     Solve the generalized eigenvalue problem

      Call dggev('No left vectors', 'Vectors (right)', n, a, lda, b, ldb, &
        alphar, alphai, beta, dummy, 1, vr, ldvr, work, lwork, info)

      If (info>0) Then
        Write (nout, *)
        Write (nout, 100) 'Failure in DGGEV. INFO =', info
      Else
!       If beta(:) > eps, Order eigenvalues by ascending real parts
!       and then by ascending imaginary parts
        If (all(abs(beta(1:n))>epsilon(1.0E0_dp))) Then
          work(1:n) = alphar(1:n)/beta(1:n)
          work(n+1:2*n) = alphai(1:n)/beta(1:n)
          ifail = 0
          Call nagf_sort_realmat_rank_rows(work, n, 1, n, 1, 2, 'Ascending', &
            irank, ifail)
          Call nagf_sort_realvec_rank_rearrange(alphar, 1, n, irank, ifail)
          Call nagf_sort_realvec_rank_rearrange(alphai, 1, n, irank, ifail)
          Call nagf_sort_realvec_rank_rearrange(beta, 1, n, irank, ifail)
!         Order the eigenvectors in the same way
          Allocate (vr_row(n))
          Do j = 1, n
            vr_row(1:n) = vr(j, 1:n)
            Call nagf_sort_realvec_rank_rearrange(vr_row, 1, n, irank, ifail)
            vr(j, 1:n) = vr_row(1:n)
          End Do
          Deallocate (vr_row)
        End If
        small = tiny(1.0E0_dp)
        pair = .False.
        Do j = 1, n
          Write (nout, *)
          If ((abs(alphar(j))+abs(alphai(j)))*small>=abs(beta(j))) Then
            Write (nout, 110) 'Eigenvalue(', j, ')', &
              ' is numerically infinite or undetermined', 'ALPHAR(', j, &
              ') = ', alphar(j), ', ALPHAI(', j, ') = ', alphai(j), ', BETA(', &
              j, ') = ', beta(j)
          Else
            If (alphai(j)==zero) Then
              Write (nout, 120) 'Eigenvalue(', j, ') = ', alphar(j)/beta(j)
            Else
              eig = cmplx(alphar(j), alphai(j), kind=dp)/ &
                cmplx(beta(j), kind=dp)
              Write (nout, 130) 'Eigenvalue(', j, ') = ', eig
            End If
          End If
          Write (nout, *)
          Write (nout, 140) 'Eigenvector(', j, ')'
          If (alphai(j)==zero) Then
!           Let largest element be positive
            work(1:n) = abs(vr(1:n,j))
            k = maxloc(work(1:n), 1)
            If (vr(k,j)<zero) Then
              vr(1:n, j) = -vr(1:n, j)
            End If
            Write (nout, 150)(vr(i,j), i=1, n)
          Else
            If (pair) Then
              Write (nout, 160)(vr(i,j-1), -vr(i,j), i=1, n)
            Else
!             Let largest element be real (and positive).
              work(1:n) = vr(1:n, j)**2 + vr(1:n, j+1)**2
              k = maxloc(work(1:n), 1)
              scal_r = vr(k, j)/sqrt(work(k))
              scal_i = -vr(k, j+1)/sqrt(work(k))
              work(1:n) = vr(1:n, j)
              vr(1:n, j) = scal_r*work(1:n) - scal_i*vr(1:n, j+1)
              vr(1:n, j+1) = scal_r*vr(1:n, j+1) + scal_i*work(1:n)
              Write (nout, 160)(vr(i,j), vr(i,j+1), i=1, n)
            End If
            pair = .Not. pair
          End If
        End Do

      End If

100   Format (1X, A, I4)
110   Format (1X, A, I2, 2A, /, 1X, 2(A,I2,A,1P,F11.3,3X), A, I2, A, 1P, &
        F11.3)
120   Format (1X, A, I2, A, 1P, F11.3)
130   Format (1X, A, I2, A, '(', 1P, F11.3, ',', 1P, F11.3, ')')
140   Format (1X, A, I2, A)
150   Format (1X, 1P, F11.5)
160   Format (1X, '(', 1P, F11.5, ',', 1P, F11.5, ')')
    End Program


ご案内
関連情報
© 日本ニューメリカルアルゴリズムズグループ株式会社 2025
Privacy Policy  /  Trademarks